Giúp em đưa ra lời giải chi tiết và dễ hiểu với bài này:
Cho phương trình \(2x^2+2\left(m-1\right)x+m^2-1=0\). Tìm m để phương trình có hai nghiệm phân x1,x2 sao cho biểu thức \(P=\left(x_1-x_2\right)^2\) đạt giá trị lớn nhất.
Giải và biện luận các phương trình sau theo tham số m :
a) \(\left|2x-5m\right|=2x-3m\)
b) \(\left|3x+4m\right|=\left|4x-7m\right|\)
c) \(\left(m+1\right)x^2+\left(2m-3\right)x+m+2=0\)
d) \(\dfrac{x^2-\left(m+1\right)x-\dfrac{21}{4}}{x-3}=2x+m\)
cho phương trình \(\left(x^2-2x+m\right)^2-2x^2+3x-m=0\) . Tìm m để phương trình đã cho có 4 nghiệm
Xác định m để phương trình \(\left(x-1\right)\left[x^2+2\left(m+3\right)x+4m+12\right]=0\) có 3 nghiệm phân biệt lớn hơn -1.
Tìm tập tất cả các giá trị của tham số m để phương trình \(3\left(\text{|x-1| +2-m}\right)=\text{|x - 1| + m - 5}\)
có nghiệm là:
\(\left(x^2-2x+3\right)^2+2\left(3-m\right)\left(x^2-2x+3\right)+m^2-6m=0\) Tìm m để phương trình có nghiệm
Cho phương trình :
\(\left(m+1\right)x^2+\left(3m-1\right)x+2m-2=0\)
Xác định m để phương trình có hai nghiệm \(x_1;x_2\) mà \(x_1+x_2=3\). Tính các nghiệm trong trường hợp đó ?
Tìm m để PT có 2 nghiệm x1,x2 thỏa mãn
a,\(x^2-2x-m^2-2m=0\left(x1< 2< x2\right)\)
b, \(2x^2+\left(m-6\right)x-m^2-3m=0\left(1< x1< x2\right)\)
c, \(mx^2+\left(2m^2-m-1\right)x-2m+1=0\left(x1< x2< 5\right)\)
Tìm m để pt sau có nghiệm:\(\sqrt{\left(1+2x\right)\left(3-x\right)}=2x^2-5x+3+m\)