Ôn tập chương III

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
 ๖ۣۜDevil

Xác định m để phương trình \(\left(x-1\right)\left[x^2+2\left(m+3\right)x+4m+12\right]=0\) có 3 nghiệm phân biệt lớn hơn -1.

Nguyễn Việt Lâm
1 tháng 4 2020 lúc 14:14

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+2\left(m+3\right)x+4m+12=0\left(1\right)\end{matrix}\right.\)

Để pt đã cho có 3 nghiệm pb lớn hơn -1 \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb thỏa mãn \(\left\{{}\begin{matrix}x_1;x_2\ne1\\-1< x_1< x_2\end{matrix}\right.\)

\(a+b+c\ne0\Leftrightarrow1+2m+6+4m+12\ne0\Rightarrow m\ne-\frac{19}{6}\)

\(\Delta'=\left(m+3\right)^2-\left(4m+12\right)>0\Leftrightarrow m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+3\right)\\x_1x_2=4m+12\end{matrix}\right.\)

\(-1< x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m+12-2m-6+1>0\\-2\left(m+3\right)>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-\frac{7}{2}\\m< -2\end{matrix}\right.\) \(\Rightarrow-\frac{7}{2}< m< -2\)

Vậy \(\left\{{}\begin{matrix}-\frac{7}{2}< m< -3\\m\ne-\frac{19}{6}\end{matrix}\right.\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
oooloo
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Ricardo Gaylord :>)
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Đào Phương Duyên
Xem chi tiết
oooloo
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
TFBoys
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết