`a, 9^(x-1)=1/9`
`=> 9^(x-1)=9^(-1)`
`=>x-1=-1`
`=>x=-1+1`
`=>x=0`
Vậy: `x=0`
`b, (3^x)/27 = 27`
`=> (3^x)/(3^3)=3^3`
`=> 3^x = 3^3 . 3^3`
`=> 3^x = 3^6`
`=>x=6`
Vậy: `x=6`
\(a,9^{x-1}=\dfrac{1}{9}\)
\(9^{x-1}=9^{-1}\)
\(x-1=-1\)
\(x=-1+1\)
\(x=0\)
Vậy ....
\(b,\dfrac{3^x}{27}=27\)
\(3^x=27.27\)
\(3^x=729\)
\(3^x=3^6\)
\(x=6\)
Vậy ....
\(d,2.3^x+3^{x-1}=7.\left(3^2+2.6^2\right)\)
\(2.3^x+3^x:3=7.\left(9+2.36\right)\)
\(2.3^x+3^x.\dfrac{1}{3}=7.\left(9+72\right)\)
\(3^x.\left(2+\dfrac{1}{3}\right)=7.81\)
\(3^x.\dfrac{7}{3}=567\)
\(3^x=567:\dfrac{7}{3}\)
\(3^x=243\)
\(3^x=3^5\)
Vậy ....