\(P=\dfrac{5x}{2}+\dfrac{x}{2}+\dfrac{1}{2x}\ge\dfrac{5x}{2}+2\sqrt{\dfrac{x}{2}.\dfrac{1}{2x}}\ge\dfrac{5.1}{2}+2.\dfrac{1}{2}=\dfrac{7}{2}\)
\(\Rightarrow P_{min}=\dfrac{7}{2}\) khi \(x=1\)
\(P=\dfrac{5x}{2}+\dfrac{x}{2}+\dfrac{1}{2x}\ge\dfrac{5x}{2}+2\sqrt{\dfrac{x}{2}.\dfrac{1}{2x}}\ge\dfrac{5.1}{2}+2.\dfrac{1}{2}=\dfrac{7}{2}\)
\(\Rightarrow P_{min}=\dfrac{7}{2}\) khi \(x=1\)
tìm min A=2x+\(\dfrac{3x}{x+2}\)
1) tìm min \(P=\dfrac{2009x^2-6039x+6\sqrt{x^3-2x^2+2x-4}-8024}{x^2-3x-4}\)
2) cho các số thực dương a,b,c thỏa mãn a2+b2+c2=1
cm \(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ca\)
1) \(x+\sqrt{1-x^2}< x\sqrt{1-x^2}\)
2)\(\dfrac{1}{\sqrt{2x^2+3x-3}}>\dfrac{1}{2x-1}\)
3)\(5\sqrt{x}+\dfrac{5}{2\sqrt{x}}< 2x+\dfrac{1}{2x}+4\)
giúp mình ạ
cho các số thực dương x,y thỏa mãn
\(\dfrac{y}{2x+3}=\dfrac{\sqrt{2x+3}+1}{\sqrt{y}+1}\)
tìm min \(Q=xy-3y-2x-3\)
với x>0 tìm min
\(M=4x^2-3x+\dfrac{1}{4x}+2011\)
Giải các bất phương trình:
a. \(\left(x+1\right)\left(x-1\right)\left(x-2\right)>0\)
b. \(\left(2x-7\right)\left(5-x\right)\ge0\)
c. \(\dfrac{-4}{3x+1}< \dfrac{3}{2x-1}\)
d. \(\dfrac{2x+3}{x-1}\le x+1\)
e. \(\left|5x-12\right|< 3\)
f. \(\left|3x+15\right|\ge3\)
Đây là đề bài:
Kiểm tra hộ mik lời giải, nếu có cách khác các bn góp ý cho mik nha, thnks nhiều!
Có \(P=\dfrac{2}{x^2+y^2}+\dfrac{35}{xy}+2xy\\ \Leftrightarrow P=\left(\dfrac{2}{x^2+y^2}+\dfrac{1}{xy}\right)+\dfrac{2}{xy}+\left(\dfrac{32}{xy}+2xy\right)\)
Xét nhóm 1: Áp dụng BĐT\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\left(1\right)\ge2\left(\dfrac{4}{\left(x+y\right)^2}\right)\ge2\left(\dfrac{4}{4^2}\right)=\dfrac{1}{2}\Rightarrow Min\left(1\right)=\dfrac{1}{2}\Leftrightarrow x=y\\\)
Xét nhóm 2: Vì \(x+y\le4\Rightarrow2\sqrt{xy}\le4\Rightarrow xy\le4\Rightarrow\dfrac{1}{xy}\ge\dfrac{1}{4}\Rightarrow Min\left(2\right)=\dfrac{1}{2}\Leftrightarrow xy=4\\ \)
Xét nhóm 3:Áp dụng BĐT Cô-si ta được:\(\dfrac{32}{xy}+2xy\ge2\sqrt{\dfrac{32}{xy}\cdot2xy}=16\Rightarrow Min\left(3\right)=16\Leftrightarrow x=y\\ \)
Từ các NX trên\(\Rightarrow MinP=\dfrac{1}{2}+\dfrac{1}{2}+16=17\left(ĐK:\right)x=y;xy=4hayx=y=2\)
Cho 0\(\le\) x \(\le\) \(\dfrac{1}{2}\). Tìm GTLN của f(x)= 3x(1-2x)
Cho x > 0 . Tìm min của y = x + \(\dfrac{1}{x^2}\).