Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh Vũ

Bài 1:cho góc nhọn xOy và k là một điểm thuộc tia phân giác của góc xOy. Kẻ K vuông góc với Ox( A thuộc Ox), KB vuông góc với Ox(B thuộc Oy)

a) Chứng minh rằng: KA= CB b)đường thẳng DK cắt Ox tại D,đường thẳng AK cắt Oy tại E.Chứng minh ∆DKE cân c)Chứng minh OK vuông góc với DE và AB // DE

Bài 2:Cho ∆ ABC vuông góc tại A. Các tia phân giác của các góc A và B cắt nhau tại I. Kẻ ID vuông góc với AB,AE vuông góc với AC(D thuộc AB,E thuộc AC)

a) Chứng minh AD = AE b)Trên cạnh BC,lấy điểm H sao cho BH = BD.Chứng minh IH vuông góc với BC

c)Chứng minh CI là tia phân giác của góc ACB

d) Chứng minh AD = AB+AC-BC : 2

e) Tính độ dài các cạnh BC,ID. Biết rằng AB = 6 cm AC = 8 cm

Bài 3:Cho ∆ ABC vuông tại C. Kẻ CH vuông với AB tại H. Kẻ tia phân giác CM của góc ACH (M thuộc AH). Trên cạnh CA lấy điểm N sao cho CN = CH

a) Chứng minh ∆CNM = ∆CHM b)Chứng minh ∆MBC cân c)Gọi K là giao điểm của MN và CH. Chứng minh AC = CK d)Chứng minh CM vuông góc với AK

e)Tìm điều kiện của ∆ABC để H là trung điểm của CK

Nguyễn Lê Phước Thịnh
18 tháng 2 2020 lúc 17:53

Bài 1:

a) Sửa đề: chứng minh KA=KB

Xét \(\Delta\)KAO vuông tại A và \(\Delta\)KBO vuông tại B có

KO là cạnh chung

\(\widehat{AOK}=\widehat{BOK}\)(do OK là tia phân giác của \(\widehat{AOB}\))

Do đó: \(\Delta\)KAO=\(\Delta\)KBO(cạnh huyền-góc nhọn)

Bài 2:

a) Xét tứ giác AEID có

\(\widehat{IEA}=90^0\)(do \(IE\perp AC\))

\(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0,E\in AC,D\in AB\))

\(\widehat{IDA}=90^0\)(do \(ID\perp AB\))

Do đó: AEID là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

Hình chữ nhật AEID có đường chéo AI là tia phân giác của \(\widehat{EAD}\)(do AI là tia phân giác của \(\widehat{BAC},E\in AC,D\in AB\))

nên AEID là hình vuông(dấu hiệu nhận biết hình vuông)

\(\Rightarrow\)AE=AD(đpcm)

b) Sửa đề: chứng minh BI vuông góc với HD

Xét \(\Delta\)HDB có HB=BD(gt)

nên \(\Delta\)HDB cân tại B(định nghĩa tam giác cân)

mà BI là đường phân giác ứng với cạnh HD

nên BI cũng là đường cao ứng với cạnh HD

\(\Rightarrow BI\perp HD\)(đpcm)

e) Áp dụng định lí pytago vào \(\Delta\)ABC vuông tại A, ta được

\(BC^2=AB^2+AC^2\)

hay \(BC=\sqrt{6^2+8^2}=10cm\)

Vậy: BC=10cm

Bài 3:

a) Xét \(\Delta\)CNM và \(\Delta\)CHM có

CN=CH(gt)

\(\widehat{NCM}=\widehat{HCM}\)(do tia CM là tia phân giác của \(\widehat{HCN}\))

CM chung

Do đó: \(\Delta\)CNM=\(\Delta\)CHM(c-g-c)

Khách vãng lai đã xóa

Các câu hỏi tương tự
xzcccccccccc
Xem chi tiết
Trần Đức Dương
Xem chi tiết
tam pham
Xem chi tiết
Nguyễn Ngọc Vy :3
Xem chi tiết
Phù Minh Huyền
Xem chi tiết
VY CHẬM HIỂU
Xem chi tiết
Lê Phương Mai
Xem chi tiết
03.Trần Minh Anh
Xem chi tiết
?????
Xem chi tiết