A= 1/(2x+1)2 +4
GTLN A = 1/4 khi x= -1/2
Ta có: \(\dfrac{1}{4x^2+4x+5}\)= \(\dfrac{1}{\left(4x^2+4x+1\right)+4}\)=\(\dfrac{1}{\left(2x+1\right)^2+4}\)
Ta có: (2x+1)2 \(\geq\) 0 \(\Leftrightarrow\) (2x+1)2 +4 \(\geq\) 4 \(\Rightarrow\) \(\dfrac{1}{\left(2x+1\right)^2+4}\) \(\leq\) \(\dfrac{1}{4}\)
Dấu'='xảy ra khi và chỉ khi x=\(\dfrac{-1}{2}\)
Vậy MinA= \(\dfrac{1}{4}\) khi và chỉ khi x=\(\dfrac{-1}{2}\)
\(A=\dfrac{1}{4x^2+4x+5}.\)
Ta có : \(A=\dfrac{1}{\left(2x+1\right)^2+4}\)
Ta có : \(\left(2x+1\right)^2\ge0\)
\(\Leftrightarrow\left(2x+1\right)^2+4\ge4\)
\(\Rightarrow\dfrac{1}{\left(2x+1\right)^2+4}\le\dfrac{1}{4}\)
Vậy \(Max_A=\dfrac{1}{4}\Leftrightarrow\left(2x+1\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)