Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai Tiến Đỗ

Bài 1: Tìm 6 SNT thỏa mãn \(p_1^2+p_2^2+p_3^2+p_4^2+p_5^2=p_6^2\)

Bài 2: Tìm SNT p để \(\frac{p+1}{2}\)\(\frac{p^2+1}{2}\)là số chính phương

Bài 3: Tìm tất cả các cặp số nguyên dương (a,b) thỏa mãn đồng thời 2 điều kiện 4a+1 và 4b-1 nguyên tố cùng nhau; a+b là ước của 16ab+1

Trần Minh Hoàng
25 tháng 10 2020 lúc 22:57

1:

Nếu trong 5 số \(p_1,p_2,p_3,p_4,p_5\) không có số nào chia hết cho 3 thì:

\(p_i^2\equiv1\left(mod3\right)\forall i\in\overline{1,5}\Rightarrow p_6^2\equiv5\equiv2\left(mod3\right)\) (vô lí).

Do đó trong 5 số đó có 1 số chia hết cho 3. Giả sử \(p_1⋮3\Rightarrow p_1=3\).

Ta có: \(9+p_2^2+p_3^2+p_4^2+p_5^2=p_6^2\).

Nếu các số \(p_2,p_3,p_4,p_5\) đều lẻ thì \(p_j^2\equiv1\left(mod8\right)\forall j\in\overline{2,5}\Rightarrow p_6^2\equiv5\left(mod8\right)\) (vô lí).

Do đó trong 4 số đó có 1 số chẵn. Giả sử \(p_2⋮2\Rightarrow p_2=2\).

Ta có: \(13+p_3^2+p_4^2+p_5^2=p_6^2\).

Dễ thấy \(p_6\) lẻ nên \(p_3^2+p_4^2+p_5^2\) chẵn. Do đó trong 3 số \(p_3,p_4,p_5\), giả sử \(p_3\) chẵn thì \(p_3=2\).

Ta có: \(17+p_4^2+p_5^2=p_6^2\).

Tương tự cách làm ở trên nếu \(p_4,p_5\) lẻ thì \(p_6^2\equiv3\left(mod8\right)\) (vô lí).

Do đó giả sử \(p_4⋮2\Rightarrow p_4=2\).

Ta có: \(21+p_5^2=p_6^2\Rightarrow p_5⋮2\Rightarrow p_5=2;p_6=5\).

Vậy p1 = 3; p2 = p3 = p4 = p5 = 2; p6 = 5.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Minh Hiếu
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Trân Phạm
Xem chi tiết
dia fic
Xem chi tiết
Lê Thị Bích Thảo
Xem chi tiết
Tống Cao Sơn
Xem chi tiết
Big City Boy
Xem chi tiết
An Vũ
Xem chi tiết