Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Luxi 208

Bài 1: So sánh 200920và 2009200910

Bài 2: Tính tỉ số

A=\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+.........+\(\frac{1}{2007}\)+\(\frac{1}{2008}\)+\(\frac{1}{2009}\)

Bài 3: Tìm x,y biết:

25-y2=8( x-2009 )

Bài 4: Cho n số X1,X2,....,Xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1,x2+x2.x3+xn.x1=0 thì n chia hết cho 4

Akai Haruma
20 tháng 9 2020 lúc 22:12

Bài 1:

$20092009^{10}=(2009.10000+2009)^{10}=(2009.10001)^{10}$

$> (2009.2009)^{10}=(2009^2)^{10}=2009^{20}$

Vậy $20092009^{10}> 2009^{20}$

Khách vãng lai đã xóa
Akai Haruma
20 tháng 9 2020 lúc 22:18

Bài 2: Để bài yêu cầu tính tỷ số nên mình nghĩ bạn đang viết đề thì phải?

Bài 3: Để bài cần bổ sung thêm điều kiện $x,y$ tự nhiên/ nguyên/..... chứ nếu $x,y$ là số thực thì có vô số giá trị bạn nhé.

Bài 4:

Vì $x_1,x_2,...,x_n$ nhận giá trị $-1$ hoặc $1$ nên $x_1x_2,x_2x_3,...,x_nx_1$ cũng nhận giá trị $-1,1$

Xét $n$ số hạng $x_1x_2,x_2x_3,...,x_nx_1$. Vì $n$ số hạng này có tổng bằng $0$ nên trong đây số số có giá trị $1$ phải bằng số số có giá trị $-1$ ($=\frac{n}{2}$)

$\Rightarrow n\vdots 2$. Ta có:

$x_1x_2.x_2x_3.x_3.x_4....x_1x_n=(x_1x_2...x_n)^2=(-1)^{\frac{n}{2}}.1^{\frac{n}{2}}=(-1)^{\frac{n}{2}}$

Nếu $\frac{n}{2}$ lẻ thì $(x_1x_2..x_n)^2=-1< 0$ (vô lý). Do đó $\frac{n}{2}$ chẵn.

Hay $n\vdots 4$

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thanh Quân lớp 7/...
Xem chi tiết
BÍCH THẢO
Xem chi tiết
Tran Tri Hoan
Xem chi tiết
nguyen hong long
Xem chi tiết
nguyen hong long
Xem chi tiết
nguyen hong long
Xem chi tiết
Hoàng Thùy Linh
Xem chi tiết
Hoàng Thùy Linh
Xem chi tiết
Dũng Phạm Tiến
Xem chi tiết