\(1,x^3-x=x\left(x^2-1\right)=x\left(x^2-1^2\right)=x\left(x-1\right)\left(x+1\right)\)
\(2,4ax^3-ax=ax\left(4x^2-1\right)=ax\left[\left(2x\right)^2-1^2\right]\) \(=ax\left(2x-1\right)\left(2x+1\right)\)
\(3,x^3-2x^2+x\)
\(=x^3-x^2-x^2+x\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x\right)=\left(x-1\right).x\left(x-1\right)=x\left(x-1\right)^2\)
\(4,y-4xy+4x^2y\)
\(=y\left(1-4x+4x^2\right)\)
\(=y\left(1^2-2.1.2x+\left(2x\right)^2\right)^{ }\)
\(=y\left(1-2x\right)^2\)
\(1,x^3-x=x\left(x^2-1\right)=x\left(x-1\right)\left(x+1\right)\\ 2,4ax^2-ax=ax\left(4-x\right)\\ 3,x^3-2x^2+5x=x\left(x^2-2x+5\right)\\ 4,y-4xy+4x^2y\\ =y\left(4x^2-4x+1\right)=y\left(2x-1\right)^2\)