Tổng số lương của chuyên gia đó sau 10 năm là:
\(S=\dfrac{10\cdot\left[2\cdot240+10\cdot1.05\right]}{2}=2452.5\left(đồng\right)\)
Tổng số lương của chuyên gia đó sau 10 năm là:
\(S=\dfrac{10\cdot\left[2\cdot240+10\cdot1.05\right]}{2}=2452.5\left(đồng\right)\)
Tìm bốn số biết rằng ba số hạng đầu lập thành một cấp số nhân, ba số hạng sau lập thành một cấp số công. Tổng của hai số hạng đầu và cuối bằng 14, còn tổng của 2 số ở giữa là 12 ?
Một cấp số nhân có 5 số hạng, công bội \(q=\frac{1}{4}\) số hạng thứ nhất, tổng của hai số hạng đầu bằng 24. Tìm cấp số nhân đó ?
Cấp số nhân \(\left(u_n\right)\) có
\(\left\{{}\begin{matrix}u_1+u_5=51\\u_2+u_6=102\end{matrix}\right.\)
a) Tìm số hạng đầu và công bội của cấp số nhân ?
b) Hỏi tổng của bao nhiêu số hạng đầu tiên sẽ bằng 3069 ?
c) Số 12 288 là số hạng thứ mấy ?
Tìm cấp số nhân có 6 số hạng, biết rằng tổng của năm số hạng đầu là 31 và tổng của năm số hạng sau là 62 ?
Tổng của số hạng thứ hai và thứ tư của một cấp số nhân tăng nghiêm ngặt là 30 và tích của chúng bằng 144. Tìm tổng mười số hạng đầu tiên của dãy số đó ?
tính tổng tất cả các số hạng của một cấp số nhân có số hạng đầu bằng \(\sqrt{2}\), số hạng thứ 2 bằng \(-2\) và số hạng cuối là \(64\sqrt{2}\)
Tìm số hạng đầu và công bội của cấp số nhân \(\left(u_n\right)\), biết:
\(\left\{{}\begin{matrix}u_1-u_3+u_5=65\\u_1+u_7=325\end{matrix}\right.\)
Cho 3 số tạo thành một cấp số nhân mà tổng của chúng bằng 93. Ta có thể sắp đặt chúng (theo thứ tự của cấp số nhân kể trên) như là số hạng thứ nhất, thứ hai và thứ bẩy của một cấp số cộng. Tìm ba số đó ?
Ba số khác nhau có tổng bằng 114 có thể coi là ba số hạng liên tiếp của một cấp số nhân, hoặc coi là số hạng thứ nhất, thứ tư và thứ hai mươi lăm của một cấp số cộng. Tìm các số đó ?