\(\Leftrightarrow\left\{{}\begin{matrix}u_1-u_1-2q+u_1+4q=65\\u_1+u_1+6q=325\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1+2q=65\\2u1+6q=325\end{matrix}\right.\)
=>u1=-130; q=195/2
`u_n = u_1 + (n-1).d`
`{(u_1-u_3+u_5=65),(u_1+u_7=325):}`
`<=>{(u_1-u_1-2d+u_1+4d=65),(u_1+u_1+6d=325):}`
`<=>{(u_1+2d=65),(2u_1+6d=325):}`
`<=>{(u_1=-130),(u_2=195/2):}`
`u_n=u_1 . q^(n-1)`
`{(u_1-u_3+u_5=65),(u_1+u_7=325):}`
`<=>{(u_1 -u_1 .q^2 +u_1 .q^4=65),(u_1+u_1 .q^6=325):}`
`<=>{(u_1(1- q^2 + q^4)=65 \(1)),(u_1 .(1+q^6=325 \(2)):}`
Lấy (2) : (1) được: `(q^6+1)/(q^4-q^2+1)=5`
`<=>q=+-2`
TH1: `q=2=>u_1=5`
TH2: `q=-2=> u_1=5`
Vậy `(u_1;q)=(5;2),(5;-2)`