Bài 4: Cấp số nhân

Bài 1 (SGK trang 103)

Hướng dẫn giải

a) Với mọi ∀n ε N*, ta có ( . 2n+1) : ( . 2n) = 2.

Suy ra un+1 = un.2, với n ε N*

Vậy dãy số đã chp là một câp số nhân với u1 = , q = 2.

b) Với mọi ∀n ε N*, ta có un+1 = =un.

Vậy dãy số đã cho là một cấp số nhân với u1 = , q =

c) Với mọi ∀n ε N*, ta có un+1 = .



(Trả lời bởi Đặng Phương Nam)
Thảo luận (1)

Bài 2 (SGK trang 103)

Hướng dẫn giải

Trong bài này ta áp dụng công thức tinh số hạng tổng quát un = u1.qn-1, biết hai đại lượng, ta sẽ tìm đại lượng còn lại:

a) q = 3.

b) u1 =

c) Theo đề bài ta có un = 192, từ đó ta tìm được n. Đáp số: n =7



(Trả lời bởi Đặng Phương Nam)
Thảo luận (2)

Bài 3 (SGK trang 103)

Hướng dẫn giải

a) Áp dụng công thức tính số hạng tổng quát, ta có:

u3 = 3 = u1.q2 và u5 = 27 = u1.q4.

Vì 27 = (u1q2).q2 = 3.q2 nên q2 = 9 hay q = ±3.

Thay q2 = 9 vào công thức chứa u3, ta có u1 = .

- Nếu q = 3, ta có cấp số nhân: , 1, 3, 9, 27.

- Nếu q = -3, ta có cáp số nhân: , -1, 3, -9, 27.

b) Áp dụng công thức tính số hạng tỏng quát từ giả thiết, ta có:

hay

Từ hệ trên ta được: 50.q = 25 => q = .

Và u1 = .

Ta có cấp số nhân .



(Trả lời bởi Minh Hải)
Thảo luận (1)

Bài 4 (SGK trang 104)

Hướng dẫn giải

Giả sử có cấp số nhân: u1, u2, u3, u4, u5,u6.

Theo giả thiết ta có:

u1 + u2 + u3 + u4 + u5 = 31. (1)

và u2 + u3 + u4 + u5 + u6 = 62. (2)

Nhân hai vế của (1) với q, ta được: q.u1 + q.u2 + q.u3 +q. u4 +q. u5 = 31.q

hay u2 + u3 + u4 + u5 + u6 = 31q

Suy ra 62 = 31.q hay q = 2.

Ta có S5 = 31 = nên suy ra u1 = 1.

Vậy ta có cấp số nhân 1, 2, 4, 8, 16, 32.



(Trả lời bởi Đặng Phương Nam)
Thảo luận (1)

Bài 5 (SGK trang 104)

Hướng dẫn giải

Giả sử số dân của một tỉnh đó hiện nay là N. Vì tỉ lệ tăng dân số là 1,4% nên sau một năm, số dân tăng thêm là 1,4%.N

Vậy số dân của tỉnh đó vào năm sau là

N + 1,4%.N = 101,4%.N = .

Như vậy số dân của tỉnh đó sau mỗi năm lập thành cấp số nhân.

N, , , ....

Vậy nếu N = 1,8 triệu người, áp dụng công thức tính số hạng tổng quát của cấp số nhân thì sau 5 năm số dân của tỉnh là ≈ 1,9 (triệu người)

và sau 10 năm sẽ là ≈ 2,1 (triệu người)


(Trả lời bởi Minh Hải)
Thảo luận (1)

Bài 6 (SGK trang 104)

Hướng dẫn giải

Xét dãy số (an), ta có a1 = 4.

Giả sử hình vuông cạnh Cn có độ dài cạnh là an. Ta sẽ tính cạnh an+1 của hình vuông Cn+1. Theo hình 9, áp dụng định lí Pi-ta-go, ta có:

an+1 = với n ε N*.

Vậy dãy số (an) là cấp số nhân với số hạng đầu là a1 = 4 và công bội q =



(Trả lời bởi Minh Hải)
Thảo luận (1)

Bài 4.1 (Sách bài tập trang 125)

Hướng dẫn giải

a) Có \(u_n=\left(-3\right)^{2n-1}=\left(-3\right)^2.\left(-3\right)^{2n-3}\)\(=9.2^{2\left(n-1\right)-1}=9.u_{n-1}\)
Vì vậy \(\left(u_n\right)\) là dãy số nhân với \(u_1=\left(-3\right)^{2.1-1}=-3\)\(q=9\).
b) Công thức truy hồi của dãy số \(\left(u_n\right)\)\(u_n=9u_{n-1}\).
c) Có \(u_n=\left(-3\right)^{2n-1}=-19683=\left(-3\right)^9\)\(\Leftrightarrow2n-1=9\)\(\Leftrightarrow n=5\).
Vậy số hạng thứ 5 bằng \(-19683\).

(Trả lời bởi Bùi Thị Vân)
Thảo luận (1)

Bài 4.2 (Sách bài tập trang 125)

Hướng dẫn giải

a)
Gọi q là công bội của \(\left(u_n\right)\). Ta có:
\(\left\{{}\begin{matrix}u_1+u_1q^4=51\\u_1q+u_1q^5=102\end{matrix}\right.\)\(\Rightarrow\dfrac{u_1+u_1q^4}{u_1q_1+u_1q^5}=\dfrac{51}{102}\)\(\Leftrightarrow\dfrac{1+q^4}{q+q^5}=\dfrac{1}{2}\)\(\Leftrightarrow\dfrac{1+q^4}{q\left(1+q^4\right)}=\dfrac{1}{2}\)\(\Leftrightarrow\dfrac{1}{q}=\dfrac{1}{2}\)\(\Leftrightarrow q=2\).
Suy ra: \(u_1+2^4u_1=51\)\(\Leftrightarrow17u_1=51\)\(\Leftrightarrow u_1=3\).
b) \(S_n=\dfrac{u_1\left(1-q^n\right)}{1-q}=\)\(\dfrac{3\left(1-2^n\right)}{1-2}=3\left(2^n-1\right)=3069\)
\(\Leftrightarrow2^n-1=1023\)\(\Leftrightarrow2^n=1024=2^{10}\)\(\Leftrightarrow n=10\).
Vậy tổng của 10 số hạng đầu tiên bằng 10.
c)
\(u_1.q^{n-1}=3.2^{n-1}=12288\)\(\Leftrightarrow2^{n-1}=4096=2^{12}\)\(\Leftrightarrow n-1=12\)\(\Leftrightarrow n=13\).
Vậy số hạng thứ 13 bằng 12 288.

(Trả lời bởi Bùi Thị Vân)
Thảo luận (1)

Bài 4.3 (Sách bài tập trang 125)

Hướng dẫn giải

a) \(u_n=u_1.q^{n-1}=u_1.2^{n-1}\)
\(S_n=\dfrac{u_1\left(1-q^n\right)}{1-q}=\dfrac{u_1\left(1-2^n\right)}{1-2}=u_1\left(2^n-1\right)\);
\(\dfrac{S_n}{u_n}=\dfrac{u_1\left(2^n-1\right)}{u_1.2^{n-1}}=\dfrac{2^n-1}{2^{n-1}}=2-\dfrac{1}{2^{n-1}}=\dfrac{63}{32}\)
Vì vậy \(\dfrac{1}{2^{n-1}}=\dfrac{1}{32}\) \(\Leftrightarrow\dfrac{1}{2^{n-1}}=\dfrac{1}{2^5}\)\(\Leftrightarrow n-1=5\Leftrightarrow n=6\).
b)
\(u_n=2.q^{n-1}=\dfrac{1}{8}\)\(\Rightarrow q^{n-1}=\dfrac{1}{16}\)
\(S_n=\dfrac{2\left(1-q^n\right)}{1-q}=\dfrac{2\left(1-q.q^{n-1}\right)}{1-q}=\dfrac{2\left(1-\dfrac{1}{16}q\right)}{1-q}=\dfrac{31}{8}\);
Suy ra \(q=-1\).

(Trả lời bởi Bùi Thị Vân)
Thảo luận (1)

Bài 4.4 (Sách bài tập trang 125)

Hướng dẫn giải

Gọi số hạng đầu và công bội của cấp số nhân là: \(u_1;q\).
a) Theo tính chất của cấp số nhân ta có:
\(\left\{{}\begin{matrix}u_1q^4-u_1=15\\u_1q^3-u_1q=6\end{matrix}\right.\)\(\Rightarrow\dfrac{u_1\left(q^4-1\right)}{u_1\left(q^3-q\right)}=\dfrac{15}{6}\)\(\Leftrightarrow\dfrac{\left(q^2-1\right)\left(q^2+1\right)}{q\left(q^2-1\right)}=\dfrac{15}{6}\)\(\Leftrightarrow\dfrac{q^2+1}{q}=\dfrac{15}{6}\)
\(\Leftrightarrow6\left(q^2+1\right)=15q\)\(\Leftrightarrow6q^2-15q+6=0\)\(\Leftrightarrow\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\end{matrix}\right.\).
Với \(q=2\).
Suy ra: \(u_1\left(q^4-q\right)=15\Rightarrow u_1=\dfrac{15}{q^4-q}=\dfrac{15}{14}\).
Với \(q=\dfrac{1}{2}\)
Suy ra \(u_1=\dfrac{15}{q^4-q}=\dfrac{-240}{7}\).

(Trả lời bởi Bùi Thị Vân)
Thảo luận (1)