Bài 4: Cấp số nhân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hà Minh Thanh

Cho 3 số tạo thành một cấp số nhân mà tổng của chúng bằng 93. Ta có thể sắp đặt chúng (theo thứ tự của cấp số nhân kể trên) như là số hạng thứ nhất, thứ hai và thứ bẩy của một cấp số cộng. Tìm ba số đó ?

Mai Nguyên Khang
21 tháng 4 2016 lúc 11:08

Gọi 3 số đã cho là \(u_1;u_2;u_3\), theo thứ tự là 3 số của một cấp số cộng

Còn cấp số nhân \(\left(v_n\right)\). Theo giả thiết ta có hệ :

\(\Leftrightarrow\begin{cases}v_1+v_2+v_3+v_4=93\left(a\right)\\v_1=u\left(1\right)_1\\u_1+d=v_1q\left(2\right)\\u_1+2d=v_1q^2\left(3\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}v_1\left(1+q+q^2\right)=93\left(a\right)\\d=u_1\left(q-1\right)\left(1V2\right)\left(4\right)\\6d=u_3-u_1=u_1\left(q^2-1\right)\left(2V3\right)\left(5\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}u_1\left(1+q+q^2\right)=93\left(a\right)\\u_1\left(q-1\right)=\frac{1}{6}u_1\left(q^2-1\right)\left(4V5\right)\left(6\right)\\d=u_1\left(q-1\right)\end{cases}\)

Từ (1) và (2) cho ta phương trình (4). Còn từ (2) và (3) cho phương trình (5). Mặt khác ừ (4) và (5) cho phương trình (6)

Do \(u_1\ne0,q\ne1\Rightarrow\left(6\right)\Leftrightarrow1=\frac{1}{6}\left(q+1\right)\Leftrightarrow q=5\)

Theo (a) : \(v_1+5v_1+25v_1=93\Leftrightarrow u_1=3\)

Vậy 3 số cần tìm là : 3,15,75


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Đoàn Thị Châu Ngọc
Xem chi tiết
Đặng Hồ Uyên Thục
Xem chi tiết
Trần Thảo Nguyên
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Đỗ Hà Thọ
Xem chi tiết
Ngọc Tú Vũ
Xem chi tiết
Huyền Nguyễn
Xem chi tiết