b. N= √c2 -1/c= √(√5 -2)2 -1/(√5 -2)= |√5 -2| -1/(√5 -2)= √5 -2 -1/√5 -2
= (√5 -2)2-1/(√5 -2)= (√5 -3)(√5 -1)/(√5 -2)
gọi t= √5 -2
= (t-1)(t+1)/t= t2-1/t =-1/t
=-1/√5 -2= 2+√5
b. N= √c2 -1/c= √(√5 -2)2 -1/(√5 -2)= |√5 -2| -1/(√5 -2)= √5 -2 -1/√5 -2
= (√5 -2)2-1/(√5 -2)= (√5 -3)(√5 -1)/(√5 -2)
gọi t= √5 -2
= (t-1)(t+1)/t= t2-1/t =-1/t
=-1/√5 -2= 2+√5
a, Giải phương trình: 2\(\left(x-\sqrt{2x^2+5x-3}\right)=1+x\left(\sqrt{2x-1}-2\sqrt{x+3}\right)\)
b, Cho ba số thực dương a,b,c thỏa mãn a,b,c=1
Chứng minh rằng:\(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}\)
cho \(\sqrt{a}+\sqrt{\sqrt{b}+}\sqrt{c}=\sqrt{3}va\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2a\right)\left(c+2b\right)}=3\)
tính M=\(\left(2\sqrt{a}+3\sqrt{b}-4\sqrt{c}\right)^2\)
Bài 1: Thực hiện phép tính
a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\)
b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)
c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\)
d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\)
Bài 2: Rút gọn biểu thức sau
\(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)
Bài 3: Cho biểu thức sau
A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-a}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{4-x}{2\sqrt{x}}\)với \(x>0\)và \(x\ne4\)
a) Rút gọn A b) Tìm x để A=-3
Bài 4: Rút gọn biểu thức sau
A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{1+\sqrt{x}}\right):\dfrac{1}{x-1}\) với \(x\ge0\) và \(x\ne1\)
Bài 5: Cho biểu thức
C= \(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)
a) Rút gọn C b) Timg giá trị của a để C>0 c) Tìm giá trị của a để C=-1
Bài 6: Giải phương trình
a) \(2\sqrt{3}-\sqrt{4+x^2}=0\\\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}=1\)
c) \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\)
d) \(\sqrt{4\left(x+2\right)^2}=8\)
a)Tính giá trị biểu thức:p= \(\dfrac{\left(5+2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{\sqrt{3}+\sqrt{2}}\)
b)Chứng minh rằng nếu a,b,c là các số dương thỏa mãn a+c =2b thì ta luôn có
\(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}=\dfrac{2}{\sqrt{a}+\sqrt{c}}\)
từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)
đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)
ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)
=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)
\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )
^_^
Cho biểu thức \(A=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\cdot\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
a. Rút gọn A
b. Tìm \(x\) để \(A>-6\)
c. Tính A khi \(a^2-3=0\)
cho biểu thức
A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
a,Tính giá trị biểu thức B khi x=36
b,Tìm x để B<\(\dfrac{1}{2}\)
c,Rút gọn A
d, Tìm giá trị x nguyên nhỏ nhất để biểu thức P=A.B nguyên
1 Rút gọn:
a) A=\(\frac{\sqrt[]{2+\sqrt[]{3}}}{4}+\sqrt[]{\frac{2-\sqrt[]{3}}{16}}+\frac{1}{\sqrt[]{3}+\sqrt[]{2}+1}\)
b)\(\left(\sqrt[]{a+\sqrt[]{a^2-8}}\right).\left(\sqrt[]{a-2\sqrt[]{2}}-\sqrt[]{a+2\sqrt[]{2}}\right),a>=2\sqrt[]{2}\)
2.Cho x= \(\sqrt[]{2-\sqrt[]{3}}.\left(\sqrt[]{6}+\sqrt[]{2}\right)-\frac{2\sqrt[]{6}+\sqrt[]{3}}{\sqrt[]{8}+1}\). Tính A= \(x^5-3x^4-3x^3+6x^2-20x+2022\)
3. Cho a,b,c >0, \(\frac{a}{a+b}=\frac{b}{c+a}=\frac{c}{a+b}\). CMR: \(\frac{\left(a+b\right)^3}{c^3}+\frac{\left(b+c\right)^3}{a^3}+\frac{\left(a+c\right)^3}{b^3}+24\)
Cho M = 1-\(\left(\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\left(\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right)\)
a, Tìm các giá trị của x để M có nghĩa.
b, Rút gọn M.
c, Tìm các giá trị nguyên của x để M nhận giá trị nguyên.