a, \(5x-xy+y^2-5y\)
\(=x\left(5-y\right)-y\left(5-y\right)\)
\(=\left(5-y\right)\left(x-y\right)\)
b, Có: \(x^2+2x+1-y^2\)
<=> \(\left(x+1\right)^2-y^2\)
<=> \(\left(x+1-y\right)\left(x+1+y\right)\)
Với x = 84; y = 15 ta có:
\(\left(x+1-y\right)\left(x+1+y\right)=\left(84+1-15\right)\left(84+1+15\right)\)
<=> \(70.100=7000\)