Bài 2: Cho phương trình x2-2mx+2m-2=0 (1) (m là tham số)
a) Giải phương trình (1) khi m=1
b) Chứng minh phương trình (1) luôn có 2 nghiệm x1,x2. Tìm m để x12 +x22 =12
cho phương trình bậc hai x2-2(m-1)x+2m-5=0 (1)
với giá trị nào của m thì phương trình có hai nghiệm x1,x2 thỏa mãn:
x1<2<x2
Cho phương trình : x2-2(m-5)x-2m +9 =0.
Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn x12 +2(m-5)x2 =4m2
Định m để phương trình có nghiệm thỏa mán hệ thức đã chỉ ra :
a) x2 +2mx-3m-2=0; 2x1-3x2=1
b)x2-4mx+4m2-m=0; x1=3x2
C)mx2+2mx+m-4=0; 2x1+x2+1=0
d)x2-(3m-1)x+2m3=0; x1=x22
e)x2+92m-8)x+8m3=0 x1=x22
f)x2-4x+m2+3m=0 x12+x2=6
Cho phương trình x2 -2.(m-1) x+2m - 5 = 0 (1) với m là tham số.
a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1, x2
b) Tìm các giá trị của m để ( x12 - 2mx1 +2m - 1) (x2 -2 ) \(\le\) 0
Cho phương trình
X^2 -2(m+1)x +m^2 +m-1 =0 (1) (m là tham số )
Tìm m để (1) có 2 nghiệm phân biệt x1,x2 thỏa mãn hệ thức
+x1^2 .x2^2 - 3x1.x2 =4
+x1/x2 +x2/x1 = 1/3
Bài 1: Không giải Pt xét xem mỗi PT sau có bao nhiêu nghiệm
a) x2
– 2x – 5= 0 ( Có 2 nghiệm phân biệt )
b) x2
+ 4x + 4= 0 ( PT có nghiệm kép )
c) x2
– x + 4 = 0 (PT vô nghiệm )
d) x2
– 5x + 2=0 ( PT có 2 nghiệm phân biệt )
*) Nhận xét :
- Với a và c trái dấu thì PT luôn có 2 nghiệm phân biệt
- Với a và c cùng dấu thì không xác định đƣợc số nghiệm của PT mà phải nhờ dấu của đen ta
D1ng 2: Dïng c«ng thøc nghiÖm ®Ó gi¶I PT bËc 2
Bμi 1: Gi¶I c ̧c PT sau :
a) x2
– 11x + 38 = 0 b) 5x2
– 6x + 27 = 0
c) x2
– (
2 8
)x+ 4 = 0 d)
1 0
4
1 2
x x
Bμi 2: Gi¶i PT sau :
0
2
1
2
3
1
)(1 2) 2(1 2) 1 3 2 0;............................ )
)( 3 1) 2 3 3 1 0;....................................... ) 1 3 (2 3 1) 3 1 0
2 2
2 2
c x x d x x
a x x b x x
*) Nhận xét :
Cần đƣa các hệ số của PT bậc hai về dạng đơn giản nhất để áp dụng công thức nghiệm
D1ng 3: T×m §K cña tham sè ®Ó PT cã nghiÖm , v« nghiÖm , cã nghiÖm kÐp :
Bài 1: Cho phƣơng trình : x2
– 4x + 3m – 1= 0 (1) (
’= 5- 3m )
a) Tìm m để PT (1) có 2 nghiệm phân biệt
b) Tìm m để PT(1) có nghiệm
Bài 2: Cho PT: x2
– 2m x + 4 =0 (2) (
’= m
2
- 8 )
a) Tìm m để PT(2) có nghiệm
b) Tìm m để PT(2) vô nghiệm
D1ng 4: Chøng minh PT lu«n cã nghiÖm , v« nghiÖm :
Bài 1: CMR: PT sau luôn có nghiệm với mọi giá trị của m
a) x
2
–( m – 1)x2
– 5 = 0
b) x
2
– 2(m +2)x - 4m - 10 = 0
Bμi 2: Cho PT : mx2 – (2m + 1) x+ (m + 1) = 0 ( 1)
a) CMR : PT (1) lu«n cã nghiÖm víi mäi gi ̧ trÞ cña m
b) T×m gi ̧ trÞ cña m ®Ó PT ( 1) cã nghiÖm > 2
2
D1ng 5: Sù t-¬ng giao cña ®-êng th1⁄4ng vμ ®-êng cong :
Bμi 1: Cho ®-êng th1⁄4ng (d) y = 2x – 5 vμ (P) y = 3x2
T×m täa ®é giao ®iÓm cña (d) vμ (P)
Bμi 2: Cho (d) y = 2(m +1) x – 1 vμ (P) y = x
2
. T×m m ®Ó
a) (d) c3⁄4t (P) t1i 2 ®iÓm ph©n biÖt
b) ( d) tiÕp xóc víi ( P)
c) ( d) không cắt (P)
Bài 3: ( Thi vào 10 năm học 2015-2016)
Cho hàm số y = x2
( P) và y = ( 5m-1)x – 6m2 + 2m ( d)
a) Tìm m để (d) cắt (P) tại 2 điểm phân biệt
b) Gọi x1 và x2
là hoành độ giao điểm của P và (d) . Tìm m để x1
2 +x2
2 = 1
Cho phương trình: \(x^2-\left(m-1\right)x+3=0\)
Tìm m để phương trình có 2 nghiệm:
a. \(\dfrac{x1}{x2}=\dfrac{1}{2}\)
b. \(\dfrac{x1-x2}{x1}=\dfrac{4}{5}\)
c. \(x^2_1+x^2_2=4\)
tìm m để pt: x2 - 2x - (m - 1)(m - 3) = 0 có 2 nghiệm x1, x2 sao cho A = (x1 + 1).x2 đạt GTLN