Giải:
a) \(B=2x\left(y-z\right)+\left(z-y\right)\left(x+m\right)\)
\(\Leftrightarrow B=\left(z-y\right)\left(x+m\right)-2x\left(z-y\right)\)
\(\Leftrightarrow B=\left(z-y\right)\left(x+m-2x\right)\)
\(\Leftrightarrow B=\left(z-y\right)\left(m-x\right)\)
Thay các giá trị của biến vào, ta được:
\(B=\left(10,6-24,6\right)\left(-31,7-18,3\right)\)
\(\Leftrightarrow B=\left(-14\right)\left(-50\right)=700\)
b) \(C=\left(x-y\right)\left(y+z\right)+y\left(y-x\right)\)
\(\Leftrightarrow C=\left(x-y\right)\left(y+z\right)-y\left(x-y\right)\)
\(\Leftrightarrow C=\left(x-y\right)\left(y+z-y\right)\)
\(\Leftrightarrow C=\left(x-y\right)z\)
Thay các giá trị của biến vào, ta được:
\(C=\left(0,86-0,26\right).1,5\)
\(\Leftrightarrow C=1,12.1,5=1,68\)
Vậy ...