\(P=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{19}}+\dfrac{1}{2^{20}}\\ 2P=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{18}}+\dfrac{1}{2^{19}}\\ 2P-P=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{18}}+\dfrac{1}{2^{19}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{19}}+\dfrac{1}{2^{20}}\right)\\ P=1-\dfrac{1}{2^{20}}\)
2)
\(P=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}\)
\(\Rightarrow2P=1+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{19}}\)
\(\Rightarrow2P-P=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}\right)\)
\(\Rightarrow P=1-\dfrac{2}{2^{20}}\)