Ta có:
\(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}=\dfrac{9a+b}{10b}=\dfrac{999a+111b}{1110b}=\dfrac{999a+a+111b}{1110b}=\dfrac{1000a+111b}{1110b+c}=\dfrac{\overline{abbb}}{\overline{bbbc}}\)
\(\Rightarrow\) Đpcm.
Ta có:
\(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}=\dfrac{9a+b}{10b}=\dfrac{999a+111b}{1110b}=\dfrac{999a+a+111b}{1110b}=\dfrac{1000a+111b}{1110b+c}=\dfrac{\overline{abbb}}{\overline{bbbc}}\)
\(\Rightarrow\) Đpcm.
Cho tỉ lệ thức \(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}\). Chứng minh rằng: \(\frac{\overline{abbb...b}}{\overline{bbb...bc}}=\frac{a}{c}\). Với bbb...b là số tự nhiên
Cho dãy tỉ số bằng nhau \(\frac{\overline{ab}}{b}=\frac{\overline{bc}}{c}=\frac{\overline{ca}}{a}\)
Chứng minh rằng: \(a=b=c\)
1/ Cho tỉ lệ thức: \(\frac{ab}{\overline{bc}}=\frac{b}{c}\)với \(c\ne0\)
Chứng minh tỉ lệ thức \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
2/ Cho dãy tỉ số bằng nhau: \(\frac{\overline{ab}}{b}=\frac{\overline{bc}}{c}=\frac{\overline{ca}}{a}\)
Chứng minh rằng a = b = c
Cho a,b,c là các chữ số đôi một khác nhau và khác 0. Biết \(\overline{ab}\) là số nguyên tố và \(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{b}{c}\). Tìm \(\overline{abc}\)
Bài 1:Tìm số \(\overline{ab}\) sao cho:
a,\(\overline{ab}\)=2ab
b,\(\overline{ab}\)=8(a+b)
Bài 2:Tìm số \(\overline{abc}\) biết a,b,c là các chữ số khác nhau và khác 0,mà:
a,\(\overline{abc}\) =\(\overline{ab}\)+\(\overline{bc}\)+\(\overline{ca}\)
b,Số \(\overline{abc}\) là trung bình cộng của hai số \(\overline{bca}\) và\(\overline{cab}\)
c,Số à trung bình cộng của tất cả các số có ba số khác nhau được lập từ ba chữ cái a,b,c
d,3a+5b=8c
Cho tỉ lệ thức : \(\frac{\overline{abc}}{a+\overline{bc}}=\frac{\overline{bca}}{b+\overline{ca}}\) , chứng minh tỉ lệ thức \(\frac{a}{\overline{bc}}=\frac{b}{\overline{ca}}\)
Cho tỉ lệ thức \(\overline{\dfrac{abc}{a+\overline{bc}}}=\overline{\dfrac{bca}{b+\overline{ca}}}.\) Chứng minh tỉ lệ thức \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}\)
Cho a, b, c đôi một khác nhau và khác 0. Biết \(\overline{ab}\) là số nguyên tố và \(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}\). Tìm số \(\overline{abc}\)
cho các số cs 2 chữ số \(\overline{ab}\) ,\(\overline{bc}\) thỏa mãn \(\dfrac{\overline{ab}}{\overline{bc}}\) =\(\dfrac{b}{c}\) (c\(\ne0\) )
c/mr:\(\dfrac{a^2+b^2}{b^2+c^2}\) =\(\dfrac{a}{c}\)