a ) \(\left(x-1\right)\left(x+1\right)-2x^2=0\)
\(\Leftrightarrow x^2-1-2x^2=0\)
\(\Leftrightarrow-x^2-1=0\)
\(\Leftrightarrow-x^2=1\)
\(\Leftrightarrow x^2=-1\) ( Vô lý , \(x^2\ge0\forall x\) )
Vậy ko có g/t x thỏa mãn
b ) \(\left(2x+5\right)\left(x^2-3x+1\right)-x\left(2x^2-1\right)=3\)
\(\Leftrightarrow2x\left(x^2-3x+1\right)+5\left(x^2-3x+1\right)-2x^3+x=3\)
\(\Leftrightarrow2x^3-6x^2+2x+5x^2-15x+5-2x^3+x=3\)
\(\Leftrightarrow\left(2x^3-2x^3\right)-\left(6x^2-5x^2\right)+\left(2x-15x+x\right)+5=3\)
\(\Leftrightarrow-x^2-12x+5=3\)
\(\Leftrightarrow-\left(x^2+12x-5\right)=3\)
\(\Leftrightarrow x^2+12x-5=-3\)
\(\Leftrightarrow x^2+12x+36-41=-3\)
\(\Leftrightarrow\left(x+6\right)^2=-3+41\)
\(\Leftrightarrow\left(x+6\right)^2=38\)
\(\Leftrightarrow\left[{}\begin{matrix}x+6=\sqrt{38}\\x+6=-\sqrt{38}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{38}+6\\x=6-\sqrt{38}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\sqrt{38}+6\\x=6-\sqrt{38}\end{matrix}\right.\)
c ) \(\left(x-1\right)2x-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
:D