Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
TTTT

a)Rút gọn biểu thứcP=\((\dfrac{\sqrt{a-2}+2}{3})(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{11-a}):(\dfrac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\dfrac{1}{\sqrt{a-2}}\)

b)Cho các số dương a,b thỏa mãn a+b=\(\sqrt{2017-a^2}+\sqrt{2017-b^2}.Chứng\) Minh \(a^2+b^2=2017\)

Mysterious Person
19 tháng 8 2018 lúc 9:08

a) điều kiện xác định : \(a>2;a\ne11\)

ta có : \(P=\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{11-a}\right):\left(\dfrac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\dfrac{1}{\sqrt{a-2}}\right)\)

\(\Leftrightarrow P=\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{\left(3+\sqrt{a-2}\right)\left(3-\sqrt{a-2}\right)}\right):\left(\dfrac{3\sqrt{a-2}+1}{\sqrt{a-2}\left(\sqrt{a-2}-3\right)}-\dfrac{1}{\sqrt{a-2}}\right)\) \(\Leftrightarrow P=\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{\sqrt{a-2}\left(3-\sqrt{a-2}\right)+a+7}{\left(3+\sqrt{a-2}\right)\left(3-\sqrt{a-2}\right)}\right):\left(\dfrac{3\sqrt{a-2}+1-\sqrt{a-2}+3}{\sqrt{a-2}\left(\sqrt{a-2}-3\right)}\right)\) \(\Leftrightarrow P=\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{3\left(\sqrt{a-2}+3\right)}{\left(3+\sqrt{a-2}\right)\left(3-\sqrt{a-2}\right)}\right):\left(\dfrac{2\sqrt{a-2}+4}{\sqrt{a-2}\left(\sqrt{a-2}-3\right)}\right)\) \(\Leftrightarrow P=\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{3}{\left(3-\sqrt{a-2}\right)}\right)\left(\dfrac{\sqrt{a-2}\left(\sqrt{a-2}-3\right)}{2\left(\sqrt{a-2}+2\right)}\right)\) \(\Leftrightarrow P=\dfrac{-\sqrt{a-2}}{2}\)

Mysterious Person
19 tháng 8 2018 lúc 9:50

ta có : \(a+b=\sqrt{2017-a^2}+\sqrt{2017-b^2}\)

\(\Leftrightarrow\left(a+b\right)\left(\sqrt{2017-a^2}-\sqrt{2017-b^2}\right)=b^2-a^2\)

\(\Leftrightarrow b-a=\sqrt{2017-a^2}-\sqrt{2017-b^2}\)

\(\Leftrightarrow2b=2\sqrt{2017-a^2}\Leftrightarrow b^2=2017-a^2\Rightarrow\left(đpcm\right)\)

nguyễn viết hoàng
18 tháng 8 2018 lúc 8:15

b, ta giả sử \(a+b=\sqrt{2017-a^2}+\sqrt{2017-b^2}\rightarrow a^2+b^2=2017\)

thật vậy khi ta thay \(a^2+b^2=2017\) vào biểu thức thì thấy thoả mãn

vậy dpcm


Các câu hỏi tương tự
Aocuoi Huongngoc Lan
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
vũ thị lan
Xem chi tiết
Võ Dương Anh Thư
Xem chi tiết
Đỗ Thùy Linh
Xem chi tiết
TTTT
Xem chi tiết
CandyK
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Nguyễn Lê Thảo Nguyên
Xem chi tiết