dễ vct \(\frac{3}{1^2.2^2}=\frac{1}{1^2}-\frac{1}{2^2}\)
tương tự
3/12 .22+5/22.32+7/32.42+.....+19/92.102 =3/1.1.2.2+ 5/2.2.3.3 7/3.3.4.4+...+19/9.9.10.10
= 1/1.1-1/2.2.+1/2.2.-1/3.3+1/3.3.-1/4.4+...+1/9.9-1/10.10
=1/1.1+(-1/2.2+1/2.2)+(-1/3.3+1/3.3)+(-1/4.4+1/4.4)+....+(-1/9.9+1/9.9)-1/10.10
=1/1.1+1+1+1+....+1-1/10.10 = 1/1.1-1/10.10= 1-1/100= 100/100-1/100 =99/100
A = \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....+\frac{19}{9^2.10^2}\)
A = \(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
A = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)
A = \(\frac{1}{1}+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)+\left(\frac{1}{16}-\frac{1}{16}\right)+...+\left(\frac{1}{81}-\frac{1}{81}\right)+\frac{1}{100}\)
A = \(\frac{1}{1}+0+0+0+...+0+\frac{1}{100}\)
A = \(\frac{1}{1}+\frac{1}{100}\)
A = \(\frac{100}{100}-\frac{1}{100}\)
A = \(\frac{99}{100}\)