Ta có:
\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\\ =\left|x-2015\right|+\left|x-2016\right|+\left|2017-x\right|+\left|2018-x\right|\\ \ge\left|x-2015+2017-x\right|+\left|x-2016+2018-x\right|\\ =2+2\\ =4\)
Dấu bằng xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x-2015\right)\left(2017-x\right)\ge0\\\left(x-2016\right)\left(2018-x\right)\ge0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2015\le x\le2017\\2016\le x\le2018\end{matrix}\right.\\ \Leftrightarrow2016\le x\le2017\)