Ta có \(a+b+c=1\Leftrightarrow\left(a+b+c\right)^2=1\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=1\Leftrightarrow1+2\left(ab+bc+ac\right)=1\Leftrightarrow ab+ac+bc=0\)
Ta lại có \(a^3+b^3+c^3=1\Leftrightarrow a^3+b^3+c^3-3abc+3abc=1\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)+3abc=1\Leftrightarrow\left[1-\left(ab+ac+bc\right)\right]+3abc=1\Leftrightarrow1+3abc=1\Leftrightarrow abc=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=0\\b=0\\c=0\end{matrix}\right.\)
Giả sử a=0, ta có b+c=1,b2+c2=1,b3+c3=1
Ta có \(b+c=1\Leftrightarrow\left(b+c\right)^2=1\Leftrightarrow b^2+c^2+2bc=1\Leftrightarrow1+2bc=1\Leftrightarrow bc=0\Leftrightarrow\)\(\left[{}\begin{matrix}b=0\\c=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}c=1\\b=1\end{matrix}\right.\)
Tương tự với b=0 và c=0
Vậy a,b,c có một số là 1 và hai số còn lại là 0
Giả sử \(\left\{{}\begin{matrix}a=0\\b=0\\c=1\end{matrix}\right.\) ta có \(a^{2009}+b^{2009}+c^{2009}=0+0+1=1\)
Tương tự với \(\left\{{}\begin{matrix}a=1\\b=0\\c=0\end{matrix}\right.\) và \(\left\{{}\begin{matrix}a=0\\b=1\\c=0\end{matrix}\right.\)
thì a2009+b2009+c2009=1
Vậy a2009+b2009+c2009=1