cho tứ giác ABCD .gọi M,N là trung điểm các cạnh AD,BC .Chứng minh MN ≤(AB+CD) :2.Dấu bằng xảy ra khi nào ?
cho tứ giác ABCD có diện tích là S. điểm O bất kì trong tứ giác. CMR:
\(OA^2+OB^2+OC^2+OD^2\ge2S\). dấu "=" xảy ra khi nào?
Cho a ≥1và b ≥1.Chứng minh:\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\) ≥\(\frac{2}{1+ab}\)
Dấu "="xảy ra khi nào?
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F theo thứ tự là hình chiếu của H trên AB, AC. Chứng minh:\(S_{AEHF}\le\dfrac{1}{2}S_{ABC}\). Dấu bằng xảy ra khi và chỉ khi tam giác ABC vuông cân tại A
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F theo thứ tự là hình chiếu của H trên AB, AC. Chứng minh: \(S_{AEHF}\le\dfrac{1}{2}S_{ABC}\). Dấu bằng xảy ra khi và chỉ khi tam giác ABC vuông cân tại A
Bài 1: Cho a,b,c là những số dương thỏa mãn: a+b+c=3
CMR: \(\dfrac{a^2}{a+2b^3}+\dfrac{b^2}{b+2c^3}+\dfrac{c^2}{c+2a^3}\ge1\)
Bài 2: Cho a, b, c thỏa mãn: ab+bc+ca=3
CMR: \(\dfrac{a}{2b^3+1}+\dfrac{b}{2c^3+1}+\dfrac{c}{2a^3+1}\ge1\)
Bài 3: Cho a, b, c > 0. CMR: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+3b\)
Dấu = xảy ra khi a=b=2c
Cho a, b, c là các số dương. Chứng minh rằng:
cho a,b,c là số thực dương. Cmr: a/b^2+ bc+c^2 + b/c^2+ ca+a^2 + c/ a^2+ ab+ b^2 >= a/ b^2+ bc + c^2 + b/c^2+ca+a^2 + c/a^2+ab + b^2 >= a+b+c/ab+ bc + ca.
CMR: a= b= c . Nếu,
a, 2( a2 + b2 + c2 ) = ab + bc + ca
b,2 ( a2 + b2 + c2 ) - 2( ab + bc + ca ) = 0
c, ( a + b + c )2 = 3( ab + bc + ca )