1.\(A=\left(9xy^2-6x^2y\right):\left(-3xy\right)+\left(6x^2y+2x^4\right):2x^2\)
\(=-3xy\left(-3y+2x\right):\left(-3xy\right)+2x^2\left(3y+x^2\right):2x^2\)
\(=-3y+2x+3y+x^2\)
\(=x^2+2x\)
2.Ta có:
\(A=x^2+2x\)
\(=x^2+2x+1-1\)
\(=\left(x+1\right)^2-1\)
Lại có: \(\left(x+1\right)^2\ge0,\forall x\)
\(\Rightarrow\left(x+1\right)^2-1\ge-1\)
Vậy \(Min_A=-1\) khi \(x+1=0\Leftrightarrow x=-1\)