\(A=\left|2x-1\right|+3\ge3\)
Dấu '=' xảy ra khi x=1/2
\(B=x^2+\left|3y+5\right|+2\ge2\)
Dấu '=' xảy ra khi x=0 và y=-5/3
\(C=-\left(x+1\right)^2+2017\le2017\)
Dấu '=' xảy ra khi x=-1
\(A=\left|2x-1\right|+3\ge3\)
Dấu '=' xảy ra khi x=1/2
\(B=x^2+\left|3y+5\right|+2\ge2\)
Dấu '=' xảy ra khi x=0 và y=-5/3
\(C=-\left(x+1\right)^2+2017\le2017\)
Dấu '=' xảy ra khi x=-1
1,Tìm a\(\in\Sigma\),biết:
\(\left(a^2-1\right)\left(a^2-4\right)\left(a^2-7\right)\left(a^2-10\right)< 0\)
2,Tìm GTNN của các biểu thức:
a,A\(=\)\(x^4+3x^2+2\)
b,B\(=\left(x^4+5\right)^2\)
c,C\(=\left(x-1\right)^2+\left(y+2\right)^2-2\)
3,Tìm GTLN của các biểu thức:
a,A\(=5-3\left(2x-1\right)^2\)
b,B\(=\frac{1}{2\left(x-1\right)^2+3}\)
c,C\(=\frac{x^2+8}{x^2+2}\)
Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau :
a) \(A=\left|x-2017\right|+\left|x-2018\right|\)
b) \(B=\dfrac{x^2+12}{x^2+4}\)
a. Tìm GTNN của các biểu thức sau
A=|x-2013|+|2014-x|
B=|x-123|+|x-456|
C=|x-1|+|x-2|+|x-3|
D=|x-1|+|x-2|+|x-3|+|x-4
b. Tìm GTLN của biểu thức
A=\(\frac{2003}{\left|x\right|+2004}\)
B=\(\frac{\left|x\right|+2003}{\left|x\right|+2002}\)
Tìm GTNN của biểu thức:
\(\left|2021-x\right|+\dfrac{1}{\sqrt{\left(-2\right)^2}}.\left|4040-2x\right|\)
1 . Tìm giá trị nhỏ nhất của biểu thức \(A=2\left|3x-1\right|-4\)
2 . Tìm GTLN của biểu thức \(B=10-4\left|x-2\right|\)
3 . Tìm GTNN của biểu thức \(C=\frac{6}{\left|x\right|-3}\) với x là số nguyên
chứng minh rằng giá trị của các biểu thức sau ko phụ thuộc vào biến
a, \(x^2-2x-\left(3x^2-5x+4\right)+\left(2x^2-3x+7\right)\)
b,\(\left(2x^3-4x^2+x-1\right)-\left(5-x^2+2x^3\right)+3x^2-x\)
c, \(\left(1-x-\dfrac{3}{5}x^2\right)-\left(x^4-2x-6\right)+0,6x^2+x^4-x\)
tìm GTNN của biểu thức:
P = \(\left[{}\left(\frac{-1}{3}\right)^2}x^3+\left(2x^2\right)^2+\frac{1}{2}]-\left[{}x\left(\frac{1}{3}x\right)^2+\begin{matrix}3\\2^3\end{matrix}\right.+x^4]+\left(y-2013\right)^2\)
Bài 1: Thu gọn các đơn thức, xác định hệ số, phần biế, tìm bậc của các đơn thức sau:
a, \(A=\frac{2}{3}x^2y.\left(-\frac{3}{4}y\right).\left(-x^2\right)\)
b, \(C=0,12y^2.\left(-1\frac{1}{3}xy\right)^2.\left(-xy\right)^3\)
c, \(E=1,2.\left(-xy^2\right)^3.\left(-\frac{3}{5}y^2\right).\left(-0,5x^2y^3\right)^2\)
d, \(B=\frac{11}{12}\left(y^2\right)^3.\left(-\frac{1}{33}x^3\right).\left(-x\right)^2\)
e, \(D=2x^3y.\left(-\frac{1}{2}xy\right)^3.x^2y\)
f, \(F=-2\frac{1}{3}x^3z^2.\left(\frac{1}{3}xy^2z\right)^2.\left(6xyz\right)\)
Tìm GTNN của các biểu thức sau:
a) \(A=x^4+3x^2+2\)
b) \(B=\left(x^4+5\right)^2\)
c) \(\left(x-1\right)^2+\left(y+2\right)^2\)