Viết các biểu thức sau dưới dạng bình phương của 1 tổng hay 1 hiệu
1/ 7-2√6
2/10 + 2√21
3/11 +2√33
4/10 + 4√16
5/11 - 2√30
6/11 + 2√10
7/11 - 4√6
8/ 11 + 4√7
9/12 - 4√5
10/ 12 + 6√3
D=√147 +√54 -4√27
A =√112 - 7√(1/7) - 14√(1/28)-21/√7
B = 3√2(4 -√2) + 3(1 - 2√2)^2
C = 2√27 + 5√12 - 3√48
E = (√15 - 2√3)^2 + 12√5
F = 3√50 - 7√8 + 12√18
G = 2√80 - 2√245 + 2√180
H =√28 - 4√63 + 7√112
I =√44 -√176 + 2√275
Giải phương trình:
a) (x-3)^2=11+6√2
b) x^2 -10x + 25=27-10√2
c) 4x^2 + 4x= 27-10√3
d) x^2+2√5x=16-4√5
e) x^2 + 4√3x=1-4√3
f) 4x^2-12√2 x -33+10√2=0
g) 2x^2-12x+9+4√2=0
h) 3x^2 -30x+26+8√3=0
Các bn giúp mk vs. Tks
Bài 1: Tính
1, \(A=\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
2, \(B=\left(\frac{3\sqrt{125}}{15}-\frac{10-4\sqrt{6}}{\sqrt{5}-2}\right).\frac{1}{\sqrt{5}}\)
3, \(C=\left(\frac{\sqrt{1000}}{100}-\frac{5\sqrt{2}-2\sqrt{5}}{2\sqrt{5}-8}\right).\frac{\sqrt{10}}{10}\)
4, \(D=\frac{1}{\sqrt{49+20\sqrt{6}}}-\frac{1}{\sqrt{49-20\sqrt{6}}}+\frac{1}{\sqrt{7-4\sqrt{3}}}\)
5, \(E=\frac{1}{\sqrt{4-2\sqrt{3}}}-\frac{1}{\sqrt{7-\sqrt{48}}}+\frac{3}{\sqrt{14-6\sqrt{5}}}\)
6, \(F=\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
7, \(G=\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}-\sqrt{11-2\sqrt{10}}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}+\sqrt{12+8\sqrt{2}}}}\)
Rút gọn:
A = \(\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
B = \(\dfrac{3\sqrt{2}+\sqrt{11}}{\sqrt{2}+\sqrt{6+\sqrt{11}}}+\dfrac{3\sqrt{2}-\sqrt{11}}{\sqrt{2}-\sqrt{6-\sqrt{11}}}+18\)
C = \(\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{2n+1}+\sqrt{2n+3}}\)với n thuộc N*
D = \(\left(\sqrt{3}+1\right)\left(\sqrt{5}-1\right)\left(\sqrt{15}-1\right)\left(7-2\sqrt{3}+\sqrt{5}\right)\)
E=\(\dfrac{\left(4+\sqrt{3}\right)}{\sqrt[]{1}+\sqrt{3}}+\dfrac{\left(8+\sqrt{15}\right)}{\sqrt{3}+\sqrt{5}}+...+\dfrac{2k+\sqrt{k^2-1}}{\sqrt{k-1}+\sqrt{k+1}}+...+\dfrac{240+\sqrt{14399}}{\sqrt{119}+\sqrt{121}}\)
F = \(\left(\dfrac{2a+1}{a\sqrt{a}-1}-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\) với a >= 0 và a khác 1
Bài 1: Tìm x, biết
a)\(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
c)\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
Tính giá trị các biểu thức:
a.\(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\sqrt{3}\)
b.\(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
c.\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)3\sqrt{6}\)
d.\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
Đưa bth sau về dạng bình phương của 1 số thực:
a, \(9+4\sqrt{5}\)
b, \(23-8\sqrt{7}\)
c, \(4-2\sqrt{3}\)
d, \(11+6\sqrt{2}\)
Bài 1 : Tính
a) \(\sqrt{16-2\sqrt{55}}\)
b) \(\sqrt{16-8\sqrt{3}}\)
c) \(\sqrt{17+12\sqrt{5}}\)
d) \(\sqrt{35+12\sqrt{6}}\)
e)\(\sqrt{29-12\sqrt{5}}\)
f) \(\sqrt{2-\sqrt{3}}\)
g) \(\sqrt{7-\sqrt{33}}\)