Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mi Mi

Giải phương trình:

a) (x-3)^2=11+6√2

b) x^2 -10x + 25=27-10√2

c) 4x^2 + 4x= 27-10√3

d) x^2+2√5x=16-4√5

e) x^2 + 4√3x=1-4√3

f) 4x^2-12√2 x -33+10√2=0

g) 2x^2-12x+9+4√2=0

h) 3x^2 -30x+26+8√3=0

Các bn giúp mk vs. Tks

Nguyễn Việt Lâm
23 tháng 6 2019 lúc 15:58

a/ \(\left(x-2\right)^2=11+6\sqrt{2}\)

\(\Leftrightarrow\left(x-2\right)^2=\left(3+\sqrt{2}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=3+\sqrt{2}\\x-2=-3-\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5+\sqrt{2}\\x=-1-\sqrt{2}\end{matrix}\right.\)

b/ \(x^2-10x+25=27-10\sqrt{2}\)

\(\Leftrightarrow\left(x-5\right)^2=\left(5-\sqrt{2}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=5-\sqrt{2}\\x-5=\sqrt{2}-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10-\sqrt{2}\\x=\sqrt{2}\end{matrix}\right.\)

c/ \(4x^2+4x+1=28-10\sqrt{3}\)

\(\Leftrightarrow\left(2x+1\right)^2=\left(5-\sqrt{3}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=5-\sqrt{3}\\2x+1=\sqrt{3}-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4-\sqrt{3}}{2}\\x=\frac{-6+\sqrt{3}}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
23 tháng 6 2019 lúc 16:04

d/ \(x^2+2\sqrt{5}x+5=21-4\sqrt{5}\)

\(\Leftrightarrow\left(x+\sqrt{5}\right)^2=\left(2\sqrt{5}-1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{5}=2\sqrt{5}-1\\x+\sqrt{5}=1-2\sqrt{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}-1\\x=1-3\sqrt{5}\end{matrix}\right.\)

e/ \(x^2+2\sqrt{12}x+12=13-4\sqrt{3}\)

\(\Leftrightarrow\left(x+2\sqrt{3}\right)^2=\left(2\sqrt{3}-1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2\sqrt{3}=2\sqrt{3}-1\\x+2\sqrt{3}=1-2\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1-4\sqrt{3}\end{matrix}\right.\)

f/ \(4x^2-12\sqrt{2}x+18=51-10\sqrt{2}\)

\(\Leftrightarrow\left(2x-3\sqrt{2}\right)^2=\left(5\sqrt{2}-1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5\sqrt{2}=5\sqrt{2}-1\\2x-2\sqrt{2}=1-5\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{10\sqrt{2}-1}{2}\\x=\frac{1-3\sqrt{2}}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
23 tháng 6 2019 lúc 16:10

g/

\(\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.3\sqrt{2}+18=9-4\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{2}x-3\sqrt{2}\right)^2=\left(2\sqrt{2}-1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}x-3\sqrt{2}=2\sqrt{2}-1\\\sqrt{2}x-3\sqrt{2}=1-2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}x=5\sqrt{2}-1\\\sqrt{2}x=1+\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{10-\sqrt{2}}{2}\\x=\frac{2+\sqrt{2}}{2}\end{matrix}\right.\)

h/

\(\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.5\sqrt{3}+75=49-8\sqrt{3}\)

\(\Leftrightarrow\left(\sqrt{3}x-5\sqrt{3}\right)^2=\left(8\sqrt{3}-1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3}x-5\sqrt{3}=8\sqrt{3}-1\\\sqrt{3}x-5\sqrt{3}=1-8\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3}x=13\sqrt{3}-1\\\sqrt{3}x=1-3\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{39-\sqrt{3}}{3}\\x=\frac{\sqrt{3}-9}{3}\end{matrix}\right.\)


Các câu hỏi tương tự
hân phúc
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Linh Nhi
Xem chi tiết
Ánh Dương
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Quynh Existn
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Trịnh Minh Tuấn
Xem chi tiết