a/ ĐKXĐ: \(-\sqrt{15}\le x\le\sqrt{15}\)
Đặt \(15-x^2=a\ge0\)
\(\sqrt{10+a}-\sqrt{a}=2\Leftrightarrow\sqrt{10+a}=2+\sqrt{a}\)
\(\Leftrightarrow10+a=a+4+4\sqrt{a}\)
\(\Leftrightarrow2\sqrt{a}=7\Rightarrow a=\frac{49}{4}\Rightarrow15-x^2=\frac{49}{4}\)
\(\Rightarrow x^2=\frac{11}{4}\Rightarrow x=\pm\frac{\sqrt{11}}{2}\)
b/ ĐKXĐ: \(x\ge-\frac{1}{3}\)
Do \(\sqrt{3x+1}+1>0\) , nhân cả 2 vế của pt với nó và rút gọn ta được:
\(3x\sqrt{3x+10}=3x\left(\sqrt{3x+1}+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\Rightarrow x=0\\\sqrt{3x+10}=\sqrt{3x+1}+1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow3x+10=3x+2+2\sqrt{3x+1}\)
\(\Leftrightarrow\sqrt{3x+1}=4\Rightarrow3x+1=16\)
c/ ĐKXĐ: ...
\(\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
d/ Đề đúng thế này thì nghĩ ko ra cách giải :(