Lời giải:
a) ĐKXĐ: \(x\geq 8\)
\(A=\sqrt{x+1}-\sqrt{x-8}=\frac{9}{\sqrt{x+1}+\sqrt{x-8}}\). Mà:
\(\sqrt{x+1}+\sqrt{x-8}=\sqrt{(\sqrt{x+1}+\sqrt{x-8})^2}=\sqrt{2x-7+2\sqrt{(x+1)(x-8)}}\)
\(\geq \sqrt{2.8-7+2.0}=3\) với mọi $x\geq 8$
Do đó: \(A=\frac{9}{\sqrt{x+1}+\sqrt{x-8}}\leq \frac{9}{3}=3\)
Vậy \(A_{\max}=3\Leftrightarrow x=8\)
b) ĐKXĐ: \(3\leq x\leq 5\)
\(B=\sqrt{x-3}+\sqrt{5-x}=\sqrt{(\sqrt{x-3}+\sqrt{5-x})^2}=\sqrt{2+2\sqrt{(x-3)(5-x)}}\)
\(\geq \sqrt{2+2.0}=\sqrt{2}, \forall 3\leq x\leq 5\)
Vậy \(B_{\min}=\sqrt{2}\Leftrightarrow 3\leq x\leq 5\)