1/Rút gọn và tính giá trị của biểu thức:
A=\(\sqrt{a-3-4\sqrt{a-1}}+\sqrt{a+8+6\sqrt{a-1}}\) tại a=3
B=\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\) tại x=7
C=\(\sqrt{2}-\sqrt{x+2\sqrt{2x-4}}\) tại x=6
D=\(\sqrt{x+\sqrt{x^2-4}}-\sqrt{x-\sqrt{x^2-4}}\) tại x=11
E=\(\sqrt{x+\sqrt{x^2-1}}-\sqrt{x-\sqrt{x^2-1}}\) tại x=9
F\(\sqrt{a^2+2\sqrt{a^2-1}}-\sqrt{a^2-2\sqrt{a^2-1}}\) tại a=3
G=\(\sqrt{15a^2}-8\sqrt{15}a+16\) tại a=\(\sqrt{\frac{5}{3}}+\sqrt{\frac{3}{5}}\)
H=\(\sqrt{10a^2-4a\sqrt{10}+4}\) tại a=\(\sqrt{\frac{2}{5}}+\sqrt{\frac{5}{2}}\)
2/Cho Q=\(\frac{6-a-\sqrt{a}}{\sqrt{a}-3}\)với a≥0
a) Rút gọn
b) Tìm giá trị của a để Q có GTLN
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Tìm GTLN của biểu thức sau :
a) \(A=2x-6\sqrt{x}-1\)
b)\(C=\frac{1}{-2x+4\sqrt{x}+3}\)
c)\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
d)\(F=\sqrt{2x-7}+\sqrt{5-2x}\)
e) \(A=-3x+6\sqrt{x}+3\)
f) \(E=\sqrt{2x+1}-\sqrt{2x-8}\)
g)\(F=\sqrt{3x-2}+\sqrt{5-3x}\)
giúp mình với ạ
Gpt : a) \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)
b) \(\sqrt[4]{1-x}+\sqrt[4]{2-x}=\sqrt[4]{3-2x}\)
c) \(\sqrt{x+1}+\sqrt{x+10}=\sqrt{x+2}+\sqrt{x+5}\)
Giair cacs pt sau:
a. \(x-\sqrt{x^4-2x^2+1}=1\)
b. \(\sqrt{x-2}+\sqrt{x-3}=-5\)
c. \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
d. \(\sqrt{x+5}+\sqrt{2-x}=x^2-25\)
e. \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
f. \(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)
1/ Tính:
a) \(\frac{\sqrt{6+\sqrt{11}}-\sqrt{7-\sqrt{33}}}{\sqrt{6}+\sqrt{2}}\)
b) \(\frac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\frac{2}{4+\sqrt{15}}-\frac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
2/ Rút Gọn: với a ≥ 0, a ≠ 1
B=\(\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\left(\frac{1+\sqrt{a}}{a-1}\right)^2\)
3/ Cho biểu thức: A = \(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{3-3\sqrt{x}}{x-5\sqrt{x}+6}\)
a) Tìm điều kiện xác định của A
b) Rút gọn A
c) Tìm x để A < -1
Tìm GTLN
A= \(\sqrt{x-5}\) + 2\(\sqrt{1-9x}\)
B= \(\sqrt{2x-5}\) + \(\sqrt{8-3x}\)
C= 3x + 4\(\sqrt{1-x^2}\)
Giai các PT sau
a, \(x=\sqrt{2-x}.\sqrt{3-x}+\sqrt{3-x}.\sqrt{5-x}+\sqrt{2-x}.\sqrt{5-x}\)
b, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
c, \(\sqrt{4x+1}+\sqrt{2x^2+x+39}=10\)
Cho A = \(\frac{2x+15\sqrt{x}+18}{x+3\sqrt{x}-18}+\frac{3x+4\sqrt{x}+1}{2x-3\sqrt{x}-5}-\frac{8x-15\sqrt{x}}{2x\sqrt{x}-11x+5\sqrt{x}}\)
Tính A tại \(x=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)