a) Tìm đa thức \(f_{\left(x\right)}=x^2+ax+b\) , biết khi chia \(f_{\left(x\right)}\) cho \(x+1\) thì dư là \(6\), còn khi chia cho \(x-2\) thì dư là \(3\)
b) Cho đa thức \(f_{\left(x\right)}=x^4-3x^3+bx^2+ax+b\) ; \(g_{\left(x\right)}=x^2-1\)
Tìm các hệ số của \(a;b\) để \(f_{\left(x\right)}\) chia hết cho \(g_{\left(x\right)}\)
a)ta có:
\(f\left(x\right):\left(x+1\right)\: dư\: 6\Rightarrow f\left(x\right)-6⋮\left(x+1\right)\\ hay\: 1-a+b-6=0\\ \Leftrightarrow b-a-5=0\Leftrightarrow b-a=5\left(1\right)\)
tương tự: \(2^2+2a+b-3=0\\ 2a+b=-1\left(2\right)\)
từ (1) và(2) => \(\left\{{}\begin{matrix}b-a=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Câu a :
Theo đề bài ta có hệ phương trình :
\(\left\{{}\begin{matrix}f\left(-1\right)=1-a+b=6\\f\left(2\right)=4+2a+b=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Vậy đa thức \(f\left(x\right)=x^2-2x+3\)
\(f\left(x\right)⋮g\left(x\right)\)
\(\Rightarrow\left\{{}\begin{matrix}1^4-3.1^3+b.1^2+a.1+b=0\\\left(-1\right)^4-3.\left(-1\right)^3+b.\left(-1\right)^2+a.\left(-1\right)+b=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2b+a=2\\2b-a=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3\\b=-\dfrac{1}{2}\end{matrix}\right.\)