b) Ta có: \(\left\{{}\begin{matrix}\left|x+2017\right|\ge x+2017\\\left|x+2005\right|=\left|-x-2005\right|\ge-x-2005\end{matrix}\right.\)
\(\Rightarrow\left|x+2017\right|+\left|x+2005\right|\ge\left(x+2017\right)+\left(-x-2005\right)\)
\(\Rightarrow A\ge x+2017-x-2005\)
\(\Rightarrow A\ge12\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\left|x+2017\right|=x+2017\\\left|x+2005\right|=-x-2005\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2017\ge0\\x+2005\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2017\\x\le-2005\end{matrix}\right.\)
\(\Leftrightarrow-2017\le x\le-2005\)
Vậy giá trị nhỏ nhất của A bằng 12 \(\Leftrightarrow-2017\le x\le-2005\)
a) Ta có:
290 = 25 . 18 = (25)18 = 3218
536 = 52 . 18 = (52)18 = 2518
Vì 3218 > 2518 nên 290 > 536
Vậy...
a) Ta có:
\(2^{90}=\left(2^5\right)^{18}=32^{18}\)
\(5^{36}=\left(5^2\right)^{18}=25^{18}\)
Vì 32 > 25 \(\Rightarrow32^{18}>25^{18}\)
Vậy .................