Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thụy Sĩ

a) Giải hệ phương trình: \(\hept{\begin{cases}\frac{3}{\sqrt{x-4}}+\frac{4}{y+2}=7\\\frac{5}{\sqrt{x-4}}-\frac{1}{y+2}=4\end{cases};}\)

b) Tìm hai số u và v thỏa mãn: \(u^2+v^2=65\)\(uv=-28\)

AI GIẢI NHANH VỚI Ạ!!!!

Tô Cường
12 tháng 5 2019 lúc 13:08

a) Đặt \(a=\frac{1}{\sqrt{x-4}},b=\frac{1}{y+2}\) từ đây ta có

\(\Rightarrow\left\{{}\begin{matrix}3a+4b=7\\5a-1b=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a+4b=7\\20a-4b=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}23a=23\\3a+4b=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\).

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{\sqrt{x-4}}=1\\\frac{1}{y+2}=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-4=1\\y+2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)

Tô Cường
12 tháng 5 2019 lúc 13:23

b) Theo đề bài ta có hệ pt

\(\left\{{}\begin{matrix}u^2+v^2=65\\uv=-28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(u+v\right)^2-uv=65\\uv=-28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=65+2.\left(-28\right)=9\\uv=-28\end{matrix}\right.\)

TH1 : \(\left\{{}\begin{matrix}u+v=3\\uv=-28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u=3-v\\\left(3-v\right)v=-28\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}v=-4\Rightarrow u=7\\v=7\Rightarrow u=-4\end{matrix}\right.\)

TH2 \(\left\{{}\begin{matrix}u+v=-3\\uv=-28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u=-3-v\\\left(-3-v\right)v=-28\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}v=-7\Rightarrow u=4\\v=4\Rightarrow u=-7\end{matrix}\right.\)

Vậy .......

Tô Cường
12 tháng 5 2019 lúc 13:24

Tương đương thứ nhất phương trình đầu là 2uv nha.


Các câu hỏi tương tự
Vũ
Xem chi tiết
Harry Anderson
Xem chi tiết
nguyen thao
Xem chi tiết
Tran Tuan
Xem chi tiết
nguyễn đình thành
Xem chi tiết
Pham Thanh Thuong
Xem chi tiết
Trần Linh Nga
Xem chi tiết
nguyễn thành
Xem chi tiết
Kim Bắp
Xem chi tiết