ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{5}{\sqrt{x-2}}-\frac{2}{x+y}=4\\\frac{4}{\sqrt{x-2}}-\frac{3}{x+y}+1=\frac{7}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{5}{\sqrt{x-2}}-\frac{2}{x+y}=4\\\frac{4}{\sqrt{x-2}}-\frac{3}{x+y}=\frac{5}{2}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\frac{1}{\sqrt{x-2}}=u>0\\\frac{1}{x+y}=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5u-2v=4\\4u-3v=\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=1\\v=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{\sqrt{x-2}}=1\\\frac{1}{x+y}=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\x+y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)