\(A=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\sqrt{\frac{\left(x^4+x^2y^2\right)^2+\left(y^4+x^2y^2\right)^2+x^4y^4}{\left(x^2+y^2\right)^2}}}\)
\(=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\sqrt{\frac{\left(x^4+x^2y^2\right)^2+2x^4y^4+2x^2y^6+y^8}{\left(x^2+y^2\right)^2}}}\)
\(=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\sqrt{\frac{\left(x^4+x^2y^2\right)^2+2\left(x^4+x^2y^2\right)y^4+y^8}{\left(x^2+y^2\right)^2}}}\)
\(=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\sqrt{\frac{\left(x^4+x^2y^2+y^4\right)^2}{\left(x^2+y^2\right)^2}}}\)
\(=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\frac{x^4+x^2y^2+y^4}{x^2+y^2}}\)
\(=\sqrt{\frac{x^2y^2}{\left(x+y\right)^2}+\frac{x^4+2x^2y^2+y^4}{x^2+y^2}}=\sqrt{\frac{x^2y^2}{\left(x+y\right)^2}+\frac{\left(x^2+y^2\right)^2}{x^2+y^2}}\)
\(=\sqrt{\frac{x^2y^2}{\left(x+y\right)^2}+x^2+y^2}=\sqrt{\frac{\left(x^2+xy\right)^2+\left(y^2+xy\right)^2+x^2y^2}{\left(x+y\right)^2}}\)
\(=\sqrt{\frac{\left(x^2+xy\right)^2+2x^2y^2+2xy^3+y^4}{\left(x+y\right)^2}}=\sqrt{\frac{\left(x^2+xy\right)^2+2\left(x^2+xy\right)y^2+y^4}{\left(x+y\right)^2}}\)
\(=\sqrt{\frac{\left(x^2+xy+y^2\right)^2}{\left(x+y\right)^2}}=\frac{x^2+xy+y^2}{x+y}\)