Lời giải:
ĐK: \(x\neq \pm 2;x\neq 0\)
a) Ta có:
\(A=\left(\frac{4x}{2+x}+\frac{8x^2}{(2-x)(2+x)}\right):\left(\frac{x-1}{x(x-2)}-\frac{2}{x}\right)\)
\(=\frac{4x(2-x)+8x^2}{(2-x)(2+x)}:\frac{(x-1)-2(x-2)}{x(x-2)}\)
\(=\frac{8x+4x^2}{(2-x)(2+x)}:\frac{-x+3}{x(x-2)}\)
\(=\frac{4x(x+2)}{(2-x)(2+x)}.\frac{x(x-2)}{3-x}\)
\(=\frac{4x}{2-x}.\frac{x(2-x)}{x-3}=\frac{4x^2}{x-3}\)
b) Để \(A>0\) thì \(\frac{4x^2}{x-3}>0\)
Mà \(4x^2>0, \forall x\neq 0\), do đó để \(\frac{4x^2}{x-3}>0\Rightarrow x-3>0\Rightarrow x>3\)
Vậy $x>3$