a, \(A=\dfrac{2x^3+x^2+2x+4}{2x+1}\\ =\dfrac{2x^3+x^2+2x+1+3}{2x+1}\\ =\dfrac{\left(2x+1\right)\left(x^2+1\right)+3}{2x+1}\\ =x^2+1+\dfrac{3}{2x+1}\)
Để \(A\in Z\) thì \(2x+1\inƯ\left(3\right)\)= \(\left\{\pm1;\pm3\right\}\)
=> \(2x\in\left\{-4;-2;0;2\right\}\) \(\Rightarrow x\in\left\{-2;-1;0;1\right\}\)
b, Để A vô nghĩa thì 2x+1=0 \(\Leftrightarrow\)x=\(\dfrac{-1}{2}\)