Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dangthihuong

a, Chứng tỏ rằng nếu \(\frac{a}{b}< \frac{c}{d}\) (b>0, d>0) thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) .

b, Hãy viết 3 số hữu tỉ xen giữa \(\frac{-1}{3}\) và\(\frac{-1}{4}\)

Lightning Farron
24 tháng 8 2016 lúc 23:25

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\left(1\right)\)

Cộng 2 vế của (1) với ab

ad+ab<bc+ab

a(b+d)<b(a+c) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(2\right)\)

Cộng 2 vế của (1) với cd: ad+cd<bc+cd

d(a+c)<c(b+d) \(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(3\right)\)

Từ (2) và (3) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Đpcm

b)Theo phần a có:

\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)

\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)

\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)

Vậy  \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)

 

Minh Thư (BKTT)
30 tháng 8 2016 lúc 13:22

a) Giả sử: \(\frac{a}{b}< \frac{a+c}{b+d}\)        (1)

\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\) 

\(\Rightarrow ab+ad< ba+bc\)

\(\Rightarrow ad< bc\) (đúng vì \(\frac{a}{b}< \frac{c}{d}\) )

Vậy (1) là đúng.    (3)

Giả sử: \(\frac{a+c}{b+d}< \frac{c}{d}\)  (2)

\(\Rightarrow\left(a+c\right).d< \left(b+d\right).c\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow ad< bc\) (đúng vì \(\frac{a}{b}=\frac{c}{d}\) )

Vậy (2) đúng.  (4)

Từ (3) và (4) suy ra:

\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)

b) \(\frac{-1}{3}< \frac{-2}{7}< \frac{-3}{11},< \frac{-4}{15}< \frac{-1}{4}\)


Các câu hỏi tương tự
Nguyễn Duy Anh
Xem chi tiết
Nguyễn Duy Anh
Xem chi tiết
đỗ thị kiều trinh
Xem chi tiết
Nguyễn Thị Chi
Xem chi tiết
Nguyễn Trọng Thắng
Xem chi tiết
Nguyễn Thị Chi
Xem chi tiết
phạm khánh ly
Xem chi tiết
Nguyễn Xuân Yến Nhi
Xem chi tiết
Vương Hàn
Xem chi tiết