Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Bảo lan

a ) Chứng minh bất đẳng thức

\(\frac{a^2+b^2+c^2}{3}\ge\left(\frac{a+b+c}{3}\right)^2\)

b ) Cho x;y;z thỏa mãn xy+yz+zx=12

Tìm Min cua M \(=x^4+y^4+z^4\)

c ) Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm. Gọi M và N lần lượt là trung điểm của BC và AB. Gọi P là điểm đối xứng với M qua AB

a, Tính diện tích của tam giác ABC

b, Chứng minh rằng MN vuông góc AB

c, Tứ giác AMBP là hình gì ? Vì sao ?

💋Amanda💋
1 tháng 3 2020 lúc 14:50
https://i.imgur.com/zDaI8UO.jpg
Khách vãng lai đã xóa
Hoàng Thị Ánh Phương
1 tháng 3 2020 lúc 14:54

Bài 1 :

Xét hiệu :

\(\frac{a^2+b^2+c^2}{3}-\left(\frac{a+b+c}{3}\right)^2\)

\(=\frac{a^2+b^2+c^2}{3}-\frac{\left(a+b+c\right)^2}{9}\)

\(=\frac{3\left(a^2+b^2+c^2\right)}{9}-\frac{a^2+b^2+c^2+2ab+2bc+2ac}{9}\)

\(=\frac{1}{9}\left[3\left(a^2+b^2+c^2\right)-a^2-b^2-c^2-2ab-2bc-2ac\right]\)

\(=\frac{1}{9}\left(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ac\right)\)

\(=\frac{1}{9}\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)

\(=\frac{1}{9}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]\)

\(=\frac{1}{9}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

Vậy \(\frac{a^2+b^2+c^2}{3}\ge\left(\frac{a+b+c}{3}\right)^2\)

Dấu " = " xay ra \(\Leftrightarrow a=b=c\)

Khách vãng lai đã xóa
Hoàng Thị Ánh Phương
1 tháng 3 2020 lúc 15:05

Ta đã từng chứng minh :

\(x^2+y^2+z^2\ge xy+yz+xz\)

Ta chứng minh như sau : Nhân 2 vế cho 2 tâ được :

\(2x^2+2y^2+2z^2\ge2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng )
Áp dụng ta có : \(x^2+y^2+z^2\ge xy+yz+xz=12\)

\(\Rightarrow\left(x^2+y^2+z^2\right)^2\ge12^2=144\)

\(\Rightarrow x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge144\left(1\right)\)

Mặt khác \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)

\(\Rightarrow2\left(x^4+y^4+z^4\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)\left(2\right)\)

Cộng vế theo vế ta được :

\(2\left(x^4+y^4+z^4\right)-2\left(x^2y^2+y^2z^2+z^2x^2\right)+x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge144\)

\(\Leftrightarrow3\left(x^4+y^4+z^4\right)\ge144\)

\(\Leftrightarrow x^4+y^4+z^4\ge48\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=2\)

Vậy \(M_{Min}=48\Leftrightarrow x=y=z=2\)

Chúc bạn học tốt !!

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Trần Thanh Ngân
Xem chi tiết
Huỳnh Hữu Thắng
Xem chi tiết
vũ nguyễn mai phương
Xem chi tiết
Huỳnh Hữu Thắng
Xem chi tiết
vũ quỳnh trang
Xem chi tiết
Huỳnh Hữu Thắng
Xem chi tiết
Huỳnh Hữu Thắng
Xem chi tiết
Khánh Huyền
Xem chi tiết
Tung Pham
Xem chi tiết