`a, a + b >= 2ab`
`-> a^2 + 2ab + b^2 >= 4ab`
`-> a^2 - 2ab + b^2 >= 0`
`-> (a-b)^2 >=0`
`a, a + b >= 2ab`
`-> a^2 + 2ab + b^2 >= 4ab`
`-> a^2 - 2ab + b^2 >= 0`
`-> (a-b)^2 >=0`
bà 1 rút gọn biểu thức :\(\sqrt{9ab}\) + 7\(\sqrt{\dfrac{a}{b}}\) - 5\(\sqrt{\dfrac{b}{a}}\) - 3ab \(\sqrt{\dfrac{1}{ab}}\)
bài 2 :cho a>0,b>0 chứng minh : \(\dfrac{a^2b}{a-b}\).\(\sqrt{\dfrac{8\left(a^2-2ab+b^2\right)}{75a^4b}}\) = \(\dfrac{2}{15}\) .\(\sqrt{6b}\)
Cho biểu thức sau:\(B=\dfrac{\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}}{\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x+1}}}\)
A)Tìm ĐKXĐ của B và thu gọn B
B)Tại \(x=\dfrac{a^2+b^2}{2ab}\left(a>b>0\right)\),tính giá trị của B theo a,b
C)Tìm tất cả các giá trị của x để B≤1
D)Tìm tất cả các giá trị của x để B=2
1) Rút gọn các đa thức:
a) \(\dfrac{1}{m.n^2}\cdot\sqrt{\dfrac{m^2.n^4}{5}}\) với \(m< 0;n\ne0\)
b) \(\sqrt{\dfrac{m^4}{9-12m+4m^2}}\) với \(m\le1,5\)
c) \(\dfrac{a-1}{\sqrt{a}-1}:\sqrt{\dfrac{\left(a-1\right)^4}{a-2\sqrt{a}+1}}\) với \(0< a< 1\)
d) \(\dfrac{a-b}{\sqrt{a+b}}:\sqrt{\dfrac{\left(a-b\right)^2}{a\left(a+b\right)}}\) với \(a>b>0\)
2) Chứng minh rằng:
\(\dfrac{a-b}{b^2}:\sqrt{\dfrac{a^2-2ab+b^2}{a^2.b^2}}=\left\{{}\begin{matrix}a\left(a>b>0\right)\\-a\left(0< a< b\right)\end{matrix}\right.\)
1)Cho a;b;c>0 thỏa \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=4\)
Chứng minh \(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le1\)
2) Cho a;b;c>0
CMR \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Cho a;b;c>0 thỏa a+b+c=3
CMR \(\dfrac{a+b}{\sqrt{a^2+b^2+6c}}+\dfrac{b+c}{\sqrt{b^2+c^2+6a}}+\dfrac{c+a}{\sqrt{c^2+a^2+6b}}>2\)
bài 38 :rút gọn các biểu thức
a)2ab\(\sqrt{\dfrac{225}{a^2b^4}}\)(với a<0,b\(\ne\)0) b)\(\sqrt{\dfrac{20\left(a-1\right)^2}{45}}\)(với a<1)
c)\(\sqrt{\dfrac{9a^2-6a+1}{b^2}}\)(với b>0,a>\(\dfrac{1}{3}\)) d)\(\left(a-2\right).\sqrt{\dfrac{a^2}{a^2-4a+4}}\) (với 0<a<2)
Cho a,b,c > 0 và a+b+c <1. Chứng minh rằng: \(\dfrac{1}{a^2+2ab}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge9\)
Chứng minh :
a) \(\dfrac{3x}{2y}+\dfrac{3}{2}\sqrt{\dfrac{3}{5}}-\sqrt{\dfrac{3}{4}}=\dfrac{3\sqrt{x}}{2}.\left(\dfrac{\sqrt{x}}{y}+\sqrt{\dfrac{3}{5x}}-\sqrt{\dfrac{1}{3}}\right)\)
b)\(ab.\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\) , với a ; b > 0
c) \(\left(\dfrac{3}{a}\sqrt{\dfrac{a^3}{b}}-\dfrac{1}{2}\sqrt{\dfrac{4}{ab}}-2\sqrt{\dfrac{b}{a}}\right):\sqrt{\dfrac{1}{ab}}=3a-2b-1\) với a, b >0
d)\(\left(\sqrt{\dfrac{16a}{b}}+3\sqrt{4ab}-a\sqrt{\dfrac{36b}{a}}+2\sqrt{ab}\right):\left(\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{a}{b}}\right)=2\) Với a, b >0
Mọi người giúp tớ với ạ !!!!!! Mình thật sự cần gấp vào ngày mai !!!!
cho a>0, b>0 và a+b\(\le\)4
tìm giá trị nhỏ nhất của biểu thức:
\(A=\dfrac{2}{a^2+b^2}+\dfrac{35}{ab}+2ab\)
Cho a, b, c > 0 thỏa mãn abc = 1.
CMR : \(\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}+\dfrac{9}{2ab+2bc+2ac}\ge\dfrac{9}{2}\)
a) Cho a > 0, b > 0 và a + b < hoặc = 4. Tìm GTNN của
A = \(\dfrac{2}{a^2+b^2}\)+ \(\dfrac{35}{ab}\)+ 2ab
b) Giải phương trình: \(\sqrt{2-x^2+2x}\) + \(\sqrt{-x^2-6x-8}\) = 1+ \(\sqrt{3}\)
c) CMR: \(\dfrac{1}{4}\)< \(\dfrac{2-\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}{2-\sqrt{2+\sqrt{2\sqrt{2+...+\sqrt{2}}}}}< \dfrac{3}{10}\)
( Tử có n dấu căn, ở mẫu có n-1 dấu căn )
d) Cho x > 0, y > 0 và x + y > hoặc = 6. Tìm GTNN của
P = 5x + 3y + \(\dfrac{12}{x}+\dfrac{16}{y}\)