b) \(\left(\frac{2}{3}x-1\right).\left(\frac{3}{4}x+\frac{1}{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x-1=0\\\frac{3}{4}x+\frac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x=1\\\frac{3}{4}x=-\frac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1:\frac{2}{3}\\x=\left(-\frac{1}{2}\right):\frac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-\frac{2}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{3}{2};-\frac{2}{3}\right\}.\)
c) \(x:\frac{9}{14}=\frac{7}{3}:x\)
\(\Rightarrow\frac{x}{\frac{19}{4}}=\frac{\frac{7}{3}}{x}\)
\(\Rightarrow x.x=\frac{7}{3}.\frac{19}{4}\)
\(\Rightarrow x.x=\frac{133}{12}\)
\(\Rightarrow x^2=\frac{133}{12}\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\frac{133}{12}}\\x=-\sqrt{\frac{133}{12}}\end{matrix}\right.\)
Vậy \(x\in\left\{\sqrt{\frac{133}{12}};-\sqrt{\frac{133}{12}}\right\}.\)
d) \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\)
\(\Rightarrow\left(3x-1\right)^{10}-\left(3x-1\right)^{20}=0\)
\(\Rightarrow\left(3x-1\right)^{10}.\left[1-\left(3x-1\right)^{10}\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(3x-1\right)^{10}=0\\1-\left(3x-1\right)^{10}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x-1=0\\\left(3x-1\right)^{10}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=1\\3x-1=\pm1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1:3\\3x-1=1\\3x-1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\3x=2\\3x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=\frac{2}{3}\\x=0\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{3};\frac{2}{3};0\right\}.\)
Chúc bạn học tốt!