\(a,Sửa:25x^2-20xy+4y^2=\left(5x-2y\right)^2\\ b,=\dfrac{1}{4}\left(\dfrac{1}{9}a^2-b^2\right)=\dfrac{1}{4}\left(\dfrac{1}{3}a-b\right)\left(\dfrac{1}{3}a+b\right)\\ c,=\dfrac{1}{8}\left(a+2\right)^3-1=\left[\dfrac{1}{2}\left(a+2\right)\right]^3-1=\left[\dfrac{1}{2}a+1\right]^3-1\\ =\left(\dfrac{1}{2}a+1-1\right)\left(\dfrac{1}{4}a^2+a+1+\dfrac{1}{2}a+1+1\right)\\ =\dfrac{1}{2}a\left(\dfrac{1}{4}a^2+\dfrac{3}{2}a+3\right)\\ d,=\left(x^3-1\right)\left(x^3+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)