\(A,2^{333}\) và \(3^{222}\)
Ta có:
\(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì 8<9 \(\Rightarrow8^{111}< 9^{111}\)
\(\Rightarrow2^{333}< 3^{222}\)
B,\(3^{2009}\) và \(9^{2005}\)
Ta có:
\(9^{2005}=\left(3^2\right)^{2005}=3^{4010}\)
Vì 2009 < 4010 \(\Rightarrow3^{2009}< 3^{4010}\)