Cho 3 điểm A (-1;1), B(3;1) C(2;4)
tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác abc
Trong mặt phẳng toạ độ cho tam giác ABC có các đỉnh A (-1;-1) , B (3; 1). C(6;0)
a) Tính chu vi và diện tích tam giác.
b) Tìm toạ độ của trọng tâm G. trực tâm H và tâm I của đường tròn ngoại tiếp tam giác ABC. Từ đó hãy kiếm tra tính chất thẳng hàng của ba điểm I, G. H.
c) tính số đo góc B của tam giác ABC.
cho tam giác ABC có ác cạnh BC = a , AC =b , AB =c , gọi I là tâm đường tròn nội tiếp tam giác ABC
a) chứng minh rằng : ( b2 -c2 )cos A = a( c.cosC -b.cosB)
Cho tam giác ABC nội tiếp đường tròn tâm O bán kính R, H là trực tâm của tam giác. Chứng minh:
\(OH^2=3R^2-2R^2\left(\cos2A+\cos2B+\cos2C\right)\)
Bài tập: Cho ΔABC có A(2; 1); B(4; 2); C(1; 0)
a) Tính chu vi
b) Tính cos BCA
c) Tìm toạ độ điểm D sao cho tứ giác ABCD là hình bình hành
d) Tìm toạ độ điểm H là hình chiếu của A trên BC
Cho tam giác ABC, BC=10. Gọi I là đường tròn tâm I thuộc BC và tiếp xúc vs cạnh AB, AC. Biết AI=3, 2IB=3IC
Tính độ dài các cạnh tam giác ABC
1. Tính độ dài phân giác trong AD của \(\Delta ABC\) theo \(a=BC;b=CA;c=AB;\alpha=\widehat{BAC}\)
2. Cho \(\Delta ABC,G\) là trọng tâm và M tùy ý.
CM: \(MA^2+MB^2+MC^2=3MG^2+\dfrac{1}{3}\left(a^2+b^2+c^2\right)\)
3. Cho \(\Delta ABC\), tìm max \(P=cosA+cosB+cosC\)
4. Cho \(\Delta ABC\), tìm min \(Q=cos2A+cos2B+cos2C\)
5. Cho \(\Delta ABC\), điểm M tùy ý. Tìm min \(F=\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MB}.\overrightarrow{MC}+\overrightarrow{MC}.\overrightarrow{MA}\)
6. CM: \(F=cos2A+cos2B-cos2C\le\dfrac{3}{2}\)
7. Tứ giác ABCD nội tiếp \(\left(O;R\right)\).
Tìm \(M\in\left(O;R\right)\) sao cho \(F=MA^2+MB^2+MC^2-3MD^2\) đạt min, max
Trong mặt phẳng Oxy,cho đường thẳng d:x-2y+1=0 và điểm M(2;-2).Toạ độ hình chiếu vuông góc của điểm M lên đường thẳng d là