\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=16\left(TM\right)\)
#Walker
\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=16\left(TM\right)\)
#Walker
x=4x=4 là nghiệm của những phương trình nào dưới đây?
\frac{x^2-6x+8}{x^2-9x+20}=0x2−9x+20x2−6x+8=0 \frac{4x-16+\left(8-2x\right)}{x^2+16}=0x2+164x−16+(8−2x)=0 \frac{x^2-16}{x^3+16}=0x3+16x2−16=0 \frac{x^3-64}{x^2-16}=0x2−16x3−64=0Cho các số thực x, y thỏa mãn - 4 ≤ x ≤ 4; 0 ≤ y ≤ 16 . Chứng minh rằng:
\(x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\) ≤ 16
giải pt sau
a) \(x^2-16+64=0\)
b)\(4x^2=36x-81\)
c) \(\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)\)
d) \(x^2-2x+1=4\)
1. 6x(x - 10) - 2x+20=0 6. 3x2 - 6x+3=0
2. 3x2(x - 3) + 3(3 - x)=0 7. 4x2 - 10x+2=0
3. x2 - 8x+16=2(x -4) 8. x2 - 12x -18=0
4. x2 - 16 + 7x ( x+4)=0 9. 3x2 - 10x+3=0
5. x2 - 13x - 14=0 10. 5x2 - 10x+10=0
Giải phương trình sau:
\(\sqrt{x^2-4x-8}+\sqrt{x^2+2\left(1-\sqrt{3}\right)x+8}+\sqrt{x^2+2\left(1+\sqrt{3}\right)x+8}=6\sqrt{2}\).
Cho 2 số thực x, y thỏa mãn \(-4\le x\le4và0\le y\le16\)
CMR: \(x.\sqrt{16-y}+\sqrt{y.\left(16-x^2\right)}\le16\)
\(\dfrac{9}{\sqrt{x-19}}+\dfrac{16}{\sqrt{y-5}}+\dfrac{25}{\sqrt{z-91}}=24-\sqrt{x-19}-\sqrt{y-5}-\sqrt{z-91}\)
Em đố mấy thánh lớp 8 làm đc bài này đó, làm đc em làm con các anh =))) gà lướt woa ko làm đc (troll)
biểu thứ A=\(\dfrac{7}{\sqrt{x}+8}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}\) + \(\dfrac{2\sqrt{x}-24}{x-9}\) với x \(\ge\)0, x\(\ne\)9
1,tính giá trị biểu thức A khi x=25
2,chứng minh B= \(\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
3, tìm x để biểu thức P= A.B có giá trị nguyên
cho A=\(\frac{x+7}{\sqrt{x}}\); B=\(\frac{\sqrt{x}}{\sqrt{x+3}}\)+\(\frac{2\sqrt{x-1}}{\sqrt{x-3}}\)-\(\frac{2x-\sqrt{x-3}}{x-9}\)
a, tinh A khi x=16
b, rut gon B
c,tim Min cua p=A+1/B