Liệt kê các phần tử x thỏa mãn:
a) \(1+\frac{2}{x-2}=\frac{10}{x+3}-\frac{50}{\left(2-x\right)\left(x+3\right)}\)
b) \(\frac{x+3}{\left(x+1\right)^2}=\frac{4x-2}{\left(2x-1\right)^2}\)
c) \(1+\frac{4}{\left(2-x\right)^2}=\frac{5}{x^2}\)
a) \(\left[m;m+2\right]\cap\left[-1;2\right]=\varnothing\) khi nào?
b) \(\left(\text{-∞; 9a }\right)\cap\left(\frac{4}{a};\text{+∞ }\right)\ne\varnothing\) khi nào?
c) \(\left(\text{-∞;a }\right)\cup\left(\frac{4}{a};\text{+∞ }\right)=R\) khi nào?
d) [ m-3; 9) có 7 phần tử nguyên khi nào?
Chứng minh rằng:
\(\frac{1.3.5.7.....\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)....2n}=\frac{1}{2^n}\)
(với n ϵ N*)
cho a,b,c là 3 số thực sao cho (a-b)(b-c)(c-a) khác 0. Tìm GTNN của biếu thức
\(P=\left(a^2+b^2+c^2+ab+bc+ac\right)\left(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(a-c\right)^2}\right)\)
\(A=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
giải hệ phương trình \(\left\{{}\begin{matrix}\frac{5}{x-2}-\frac{2y-4}{y-3}=2\\\frac{x+2}{x-2}-\frac{2}{y-3}=4\end{matrix}\right.\)
Giải pt :
\(\left\{{}\begin{matrix}x\sqrt{x^2+y}+y=\sqrt{x^4+x^2}+x\\x+\sqrt{y}+\sqrt{x-1}+\sqrt{y\left(x-1\right)}=\frac{9}{2}\end{matrix}\right.\)
Cho A=\(\left\{x\in R,\left|x-2\right|\le3\right\}\), B=\(\left\{x\in R,\frac{x+3}{2-x}\le0\right\}\). Xác định \(A\cap B\) ; \(A\cup B\) ; A\B ; B\A
Giải các phương trình:
a) (\(x^2+\frac{4}{x^2}\)) - \(4\left(x-\frac{2}{x}\right)-9=0\)