Chương 2: HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Anh

47/004

Cho x,y là các số thực dương thỏa mãn \(log_{\frac{1}{3}}x+log_{\frac{1}{3}}y\le log_{\frac{1}{3}}\left(x+y^2\right)\). Tìm giá trị nhỏ nhất Pmin của biểu thức P = 2x + 3y

Nguyễn Việt Lâm
27 tháng 6 2020 lúc 19:03

\(\Leftrightarrow log_{\frac{1}{3}}xy\le log_{\frac{1}{3}}\left(x+y^2\right)\)

\(\Rightarrow xy\ge x+y^2\) (do \(\frac{1}{3}< 1\))

\(\Rightarrow x\left(y-1\right)\ge y^2\) (\(y-1>0\) do

Nếu \(y\le1\Rightarrow\left\{{}\begin{matrix}VT\le0\\VP>0\end{matrix}\right.\) (vô lý)

\(\Rightarrow y>1\Rightarrow x\ge\frac{y^2}{y-1}\)

\(\Rightarrow P=2x+3y\ge\frac{2y^2}{y-1}+3y=5y+2+\frac{2}{y-1}\)

\(\Rightarrow P\ge5\left(y-1\right)+\frac{2}{y-1}+7\ge2\sqrt{\frac{10\left(y-1\right)}{y-1}}+7=7+2\sqrt{10}\)

\(P_{min}=7+2\sqrt{10}\) khi \(\left\{{}\begin{matrix}y=1+\frac{\sqrt{10}}{5}\\x=\frac{y^2}{y-1}=...\end{matrix}\right.\)


Các câu hỏi tương tự
Phạm Trần Phát
Xem chi tiết
Nguyễn Hoàng Minh Đức
Xem chi tiết
Phạm Trần Phát
Xem chi tiết
Ngưu Kim
Xem chi tiết
AllesKlar
Xem chi tiết
Lê Văn Quốc Huy
Xem chi tiết
Ngưu Kim
Xem chi tiết
Ngưu Kim
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết