\(a+b+c=\frac{abc}{a}+\frac{abc}{b}+\frac{1}{c}\Leftrightarrow a+b+c=bc+ac+\frac{1}{c}\)
\(\Leftrightarrow c\left(a+b\right)-\left(a+b\right)+\frac{1}{c}-c=0\)
\(\Leftrightarrow\left(a+b\right)\left(c-1\right)-\frac{c^2-1}{c}=0\)
\(\Leftrightarrow\left(a+b\right)\left(c-1\right)-\frac{\left(c+1\right)\left(c-1\right)}{c}=0\)
\(\Leftrightarrow\left(c-1\right)\left(a+b-\frac{c+1}{c}\right)=0\)
\(\Leftrightarrow\left(c-1\right)\left(a+b-\frac{c+abc}{c}\right)=0\)
\(\Leftrightarrow\left(c-1\right)\left(a+b-1-ab\right)=0\)
\(\Leftrightarrow\left(c-1\right)\left[a-1-b\left(a-1\right)\right]=0\)
\(\Leftrightarrow\left(c-1\right)\left(a-1\right)\left(1-b\right)=0\Rightarrow\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)